Image Analysis for Plant Phenotyping

Enyu Cai, Purdue University

Abstract

Plant phenotyping focuses on the measurement of plant characteristics throughout the growing season, typically with the goal of evaluating genotypes for plant breeding and management practices related to nutrient applications. Estimating plant characteristics is important for finding the relationship between the plant’s genetic data and observable traits, which is also related to the environment and management practices. Recent machine learning approaches provide promising capabilities for high-throughput plant phenotyping using images. In this thesis, we focus on estimating plant traits for a field-based crop using images captured by Unmanned Aerial Vehicles (UAVs). We propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data. We describe the use of transfer learning using a model fine-tuned for a single field or a single type of plant on a varied set of similar crops and fields. We introduce a method for rapidly counting panicles using images acquired by UAVs. We evaluate three different deep neural network structures for panicle counting and location. We propose a method for sorghum flowering time estimation using multi-temporal panicle counting. We present an approach that uses synthetic training images from generative adversarial networks for data augmentation to enhance the performance of sorghum panicle detection and counting. We reduce the amount of training data for sorghum panicle detection via semi-supervised learning. We create synthetic sorghum and maize images using diffusion models. We propose a method for tomato plant segmentation by color correction and color space conversion. We also introduce the methods for detecting and classifying bacterial tomato wilting from images.

Degree

Ph.D.

Advisors

Delp, Purdue University.

Subject Area

Aerospace engineering|Agronomy|Artificial intelligence|Genetics|Robotics|Transportation

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS