Reproductive Competence in Female ICR Mice Following High Fat Diet and Constant Light Exposure

Kelsey Teeple, Purdue University

Abstract

In modern society, continuous light exposure and obesity are increasingly prevalent, especially in women of childbearing age. Circadian, metabolic, and reproductive systems have a complex, inter-regulated relationship. Thus, the disruption of one system likely impedes another. Excessive adiposity and circadian disruption alter normal behavior and physiology and disrupt the endocrine milieu. The overall goal of the studies described in this thesis was to develop and test a model system that could tease apart the influence of prepregnancy obesity and circadian disruption, as well as study the combined effects on female reproductive competence. The first study focuses on the prepregnancy period and aims to determine the effect of high fat diet feeding on diurnal eating pattern, body weight over the four-week period, the body composition at the end of the four-week period, hair corticosterone levels, and circadian fecal corticosterone patterns on female ICR mice. Five-week-old female ICR mice were randomly assigned to control (CON; 10% fat) or high fat (HF; 60%) diets and fed for four weeks to achieve adequate adiposity. During this four-week time period, mice had routine light exposure of 12h light and 12h dark. Feed was weighed at 0600 and 1745 Monday-Friday to determine diurnal feed intake. The mice were weighed on a weekly basis. After four weeks on respective diets, mice were anesthetized with isoflurane to measure crown-rump length to calculate BMI and hair was shaved for corticosterone extraction. Once mice recovered from anesthesia, body composition was measured with EchoMRI. After 1 week on diets, HF mice consumed more (P<0.05) during the day than CON mice, which is typically when mice are inactive. After two weeks on diets, HF mice weighed more (P<0.05) than CON, as well as had higher BMI and percent body fat (P<0.05) than CON after four weeks on diets. After four weeks on diets, HF mice had high hair corticosterone (P<0.05). Sampling feces over a 48h period at the end of the four weeks demonstrated that HF mice had elevated basal corticosterone, attenuated circadian rhythms, and a shift in corticosterone amplitude. The prepregnancy period demonstrated that high fat diets alone alter circadian eating pattern and corticosterone rhythms. The remainder of the study continued the dietary treatments assigned during the prepregnancy period, as well as implemented light conditions to create a 2Χ3 factorial study design. There were three light conditions: 12h light and 12h dark (LD), 24h dim light (L5), or 24h bright light (L100). Mice were moved into experimental light conditions after the observation of a vaginal plug or after 5 days with males. This portion of the study aimed to determine the effect of diet (CON or HF) and light exposure (LD, L5, or L100) on gestation length, number of pups born, milk composition, litter weight on postnatal day 12, as well as dam feed intake, hair corticosterone levels, and plasma prolactin. Continuous light exposure increased gestation length, with L5 (19.1 d ± 0.23) and L100 (18.9 d ± 0.21) having longer gestation lengths (P<0.05) than LD (18.1 d ± 0.25). Diet affected the number of pups born (P<0.05), with HF dams having fewer pups (9.99 ± 0.4) than CON (11.4 ± 0.4).

Degree

M.Sc.

Advisors

Casey, Purdue University.

Subject Area

Behavioral psychology|Endocrinology|Neurosciences|Psychology|Public health

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS