Design, Control, and Validation of a Transient Thermal Management System with Integrated Phase-Change Thermal Energy Storage
Abstract
An emerging technology in the field of transient thermal management is thermal energy storage, or TES, which enables temporary, on-demand heat rejection via storage as latent heat in a phase-change material. Latent TES devices have enabled advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC systems and providing supplemental heat rejection in transient thermal management systems. However, the design of a transient thermal management system with integrated storage comprises many challenges which are yet to be solved. For example, design approaches and performance metrics for determining the optimal dimensions of the TES device have only recently been studied. Another area of active research is estimation of the internal temperature state of the device, which can be difficult to directly measure given the transient nature of the thermal storage process. Furthermore, in contrast to the three main functions of a thermal-fluid system—heat addition, thermal transport, and heat rejection—thermal storage introduces the need for active, real-time control and automated decision making for managing the operation of the thermal storage device.In this thesis, I present the design process for integrating thermal energy storage into a single-phase thermal management system for rejecting transient heat loads, including design of the TES device, state estimation and control algorithm design, and validation in both simulation and experimental environments. Leveraging a reduced-order finite volume simulation model of a plate-fin TES device, I develop a design approach which involves a transient simulation-based design optimization to determine the required geometric dimensions of the device to meet transient performance objectives while maximizing power density. The optimized TES device is integrated into a single-phase thermal-fluid testbed for experimental testing. Using the finite volume model and feedback from thermocouples embedded in the device, I design and experimentally validate a state estimator based on the state-dependent Riccati equation approach for determining the internal temperature distribution to a high degree of accuracy. Real-time knowledge of the internal temperature state is critical for making control decisions; to manage the operation of the TES device in the context of a transient thermal management system, I design and test, both in simulation and experimentally, a logic-based control strategy that uses fluid temperature measurements and estimates of the TES state to make real-time control decisions to meet critical thermal management objectives. Together, these advances demonstrate the potential of thermal energy storage technology as a component of thermal management systems and the feasibility of logic-based control strategies for real-time control of thermal management objectives.
Degree
M.Sc.
Advisors
Jain, Purdue University.
Subject Area
Design|Energy|Thermodynamics
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.