Modeling Hybrid-Electric Aircraft and their Fleet-Level Co2Emission Impacts

Samarth Jain, Purdue University

Abstract

With rising concerns over commercial aviation’s contribution to global carbon emissions, there exists a tremendous pressure on the aviation industry to find advanced technological solutions to reduce its share of CO2 emissions. Single-aisle (or narrowbody) aircraft are the biggest contributors to CO2emissions by number of operations, insisting a need to reduce / eliminate their aircraft-level fuel consumption as soon as possible. A potential solution for this is to operate fully-electric single-aisle aircraft; however, the limitations of the current (and predicted future) battery technology is forcing the industry to explore hybrid-electric aircraft as a possible mid-term solution.Modeling hybrid-electric aircraft comes with its own challenges due to the presence of two different propulsion sources – gas turbine engines (powered by Jet-A fuel) and electric motors (powered by batteries). Since traditional sizing approaches and legacy sizing tools do not seem to work well for hybrid-electric aircraft, this work presents a “flight-mechanicsbased” conceptual sizing tool for hybrid-electric aircraft, set up as a Multidisciplinary Design Optimization (MDO) toolbox. Some of the key features of the sizing tool include concurrently sizing the electric motors and downsizing the gas turbine engines while meeting the oneengine-inoperative (OEI) and top-of-climb constraints, and re-sizing the fuselage to account for the volumetric constraints associated with required batteries. Current work considers a parallel hybrid-electric single-aisle aircraft with a 900 nmi design range, with electric power augmentation (with electric motors operating at full throttle) available only for the takeoff and climb segments when sizing the aircraft. Four hybrid-electric propulsion technology cases are considered, and the resulting hybrid-electric aircraft show 15.0% to 22.5% reduction in fuel burn compared to a Boeing 737-800 aircraft.Another challenge with modeling hybrid-electric aircraft is determining their off-design performance characteristics (considering a different payload or mission range, or both). This work presents an energy management tool – set up as a nonlinear programming optimization problem – to minimize the fuel burn for a payload-range combination by identifying the optimal combination of throttle settings for the gas turbine engines and the electric motors during takeoff, climb, and cruise, along with identifying an optimal flight path. The energy management tool enables fuel savings of at least of 2%, with actual savings ranging from 142.1 lbs to 276.1 lbs per trip for a sample route (LGA–ORD) at a 80% load factor.Although the hybrid-electric aircraft sizing and performance analysis studies show encouraging results about the potential reduction in carbon emissions at an aircraft level, the future fleet-level carbon emissions are not expected to reduce proportionally to these aircraft level emission reductions. This work predicts the fleet-level environmental impacts of future single-aisle parallel hybrid-electric aircraft by modeling the behavior of a profit-seeking airline (with a mixture of conventional all Jet-A fuel burning and hybrid electric aircraft in its fleet) using the Fleet-Level Environmental Evaluation Tool (FLEET). FLEET’s modelbased predictions rely upon historically-based information about US-touching airline routes and passenger demand served by US flag-carrier airlines from the Bureau of Transportation Statistics to initiate model-based predictions of future demand, aircraft fleet mix, and aircraft operations.

Degree

Ph.D.

Advisors

Crossley, Purdue University.

Subject Area

Design|Energy|Management|Marketing|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS