Ultrafast Nanoscale Patterning System: Surfing Scanning Probe Lithography

Bojing Yao, Purdue University

Abstract

The development of the semiconductor industry is encountering a giant leap recently as Moorse’s is extended to the next levels. Advanced nanomanufacturing technology is the major challenge in the way. Higher resolution down to a few nanometers as well as higher throughput is always the key. As the optical lithography determines the feature size, the photomask is still in need of a low-cost and high resolution maskless patterning tool. In another aspect, the growing information allows the generation and storage of data at ever faster rates, which has led to the era of big data reaching a heroic amount of 7 zettabytes of total data in 2020. Future growth requires the total shipment of data storage capacity to double roughly every two years or less. For the future generation of magnetic data storage, the bit patterned medium (BPM) in combination with the current heat assisted magnetic recording (HAMR) is expected to increase the areal storage capacity by another order of magnitude by physically isolating magnetic bits at the nanoscale. Electron beam lithography (EBL) as a universal maskless lithography technique shows great resolution but has a high tool cost and low process throughput. Scanning probe lithography (SPL) is another family of nanoscale patterning techniques with low tool cost but the practical throughput is still limited. For example, dip pen nanolithography utilizes an AFM probe as a writing pen in direct patterning, but the ink delivery is limited by the rate of ink’s capillary transport. Other SPLs such as thermal probes with capabilities of 3D fabrication and surface oxidation via chemical reactions are all facing similar limitations in throughput. One way of breaking this limitation is to use parallel writing with millions of probes which also faces uniformity problems. In this Ph.D. dissertation, we report our Surfing Scanning Probe lithography (SSPL) method which can boost the scanning speed of SPL by several orders of magnitudes at a low cost by using a hydro-aero-dynamic scanning scheme. We use a homemade patterning head to continuously scan over a partially-wet spinning substrate at a linear speed of meters per second. The head carries several metallic tips which emit electrons and induce electrochemical reactions inside a gap of 10 nm scale. We use a liquid phase precursor and deliver it using the near-field electrospinning method and microfluid structures during the fast patterning. The best linewidth demonstrated is about 15 nm in full-width half maximum (FWHM) which can be further improved using smaller scanning gaps and sharp probe tips. Besides direct writing with a liquid precursor, SSPL can work with gas precursors as well enabled by nano plasma. The rate of material deposition is much high than conventional SPL. The SSPL system is a low-cost nanopatterning technology to produce patterns at high throughput and high resolution.

Degree

Ph.D.

Advisors

Xu, Purdue University.

Subject Area

Energy|Design|Electromagnetics|Nanotechnology|Optics|Physics|Plasma physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS