Analyzing Compressed Air Demand Trends to Develop a Method to Calculate Leaks in a Compressed Air Line Using Time Series Pressure Measurements

Ebin John Daniel, Purdue University

Abstract

Compressed air is a powerful source of stored energy and is used in a variety of applications varying from painting to pressing, making it a versatile tool for manufacturers. Due to the high cost and energy consumption associated with producing compressed air and it’s use within industrial manufacturing, it is often referred to as a fourth utility behind electricity, natural gas, and water. This is the reason why air compressors and associated equipment are often the focus for improvements in the eyes of manufacturing plant managers. As compressed air can be used in multiple ways, the methods used to extract and transfer the energy from this source vary as well. Compressed air can flow through different types of piping, such as aluminum, Polyvinyl Chloride (PVC), rubber, etc. with varying hydraulic diameters, and through different fittings such as 90-degree elbows, T-junctions, valves, etc.which can cause one of the major concerns related to managing the energy consumption of an air compressor, and that is the waste of air through leaks. Air leaks make up a considerable portion of the energy that is wasted in a compressed air system, as they cause a multitude of problems that the compressor will have to makeup for to maintain the steady operation of the pneumatic devices on the manufacturing floor that rely on compressed air for their application. When air leaks are formed within the compressed air piping network, they act as continuous consumers and cause not only the siphoning off of said compressed air, put also reduce the pressure that is needed within the pipes. The air compressors will have to work harder to compensate for the losses in the pressure and the amount of air itself, causing an over consumption of energy and power.Overworking the air compressor also causes the internal equipment to be stretched beyond its capabilities, especially if they are already running at full loads, reducing their total lifespans considerably. In addition, if there are multiple leaks close to the pneumatic devices on the manufacturing floor, the immediate loss in pressure and air can cause the devices to operate inefficiently and thus cause a reduction in production. This will all cumulatively impact the manufacturer considerably when it comes to energy consumption and profits. There are multiple methods of air leak detection and accounting that currently exist so as to understand their impact on the compressed air systems. The methods are usually conducted when the air compressors are running but during the time when there is no, orminimal, active consumption of the air by the pneumatic devices on the manufacturing floor.This time period is usually called non-production hours and generally occur during breaksor between employee shift changes. This time is specifically chosen so that the only air consumption within the piping is that of the leaks and thus, the majority of the energy and power consumed during this time is noted to be used to feed the air leaks. The collected data is then used to extrapolate and calculate the energy and power consumed by these leaks for the rest of the year. There are, however, a few problems that arise when using such a method to understand the effects of the leaks in the system throughout the year.

Degree

M.Sc.

Advisors

Goodman, Purdue University.

Subject Area

Accounting|Applied physics|Energy|Fluid mechanics|Industrial engineering|Mechanics|Physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS