Improving Worker Safety And Environmental Protection by Understanding Chemical Emissions From Plastic Composites During Manufacture and Use

Seyedeh-Mahboobeh Teimouri Sendesi, Purdue University

Abstract

This dissertation focused on cured-in-place-pipe (CIPP) technology, which is being used to repair sewer pipes across the globe. The CIPP process involves the manufacture of a new fiberreinforced composite plastic pipe inside an existing damaged pipe. By 2022, the global CIPP market will exceed $2.5 billion and constitute 40% of the U.S. pipe rehabilitation market. In recent years, concerns about the type, magnitude, and toxicity of chemical air emissions associated with CIPP installations have markedly increased. CIPP installations in Asia, Europe, Oceania, and North America have been associated with indoor and ambient air contamination incidents, afflicted schools, daycare centers, homes, and offices and prompted building evacuations. This research program was designed to better understand chemical release into the air during CIPP composite manufacture and the human health risks. Principles and techniques from the environmental engineering, air quality, material science, and risk analysis were applied. This dissertation contains three chapters and each chapter is a stand-alone manuscript, with the first chapter already having been published. Chapter 1 involved the characterization of chemical emissions for steam-cured CIPP installations in Indiana (IN, sanitary sewer) and California (CA, storm sewer). It was discovered that a complex multiphase mixture of organic vapor, water vapor, and particulate (condensable vapor and partially cured resin) was emitted. Chemicals captured included a variety of hazardous air pollutants, carcinogens, endocrine disrupting compounds, and other chemicals with little toxicity data. The materials captured in California during 4 CIPP installations, when normalized against styrene concentration, exhibited different toxicity towards mouse cells. This toxicity indicated that non-styrene compounds were probably responsible for toxicity. Testing revealed significant and previously unreported worker and public safety chemical risks existed with CIPP installations. Chapter 2 describes experiments conducted to determine which CIPP manufacturing conditions (i.e. curing pressure, temperature, time and ventilation) influenced chemical air emissions during and after composite manufacture. During thermal manufacture, approximately 8.87 wt% volatile organic compounds (VOC) was released into the air at standard pressure. For the CIPP styrene-based resin examined, chemical volatilization during manufacture was influenced by pressure, but temperature and heating time did not influence the composition of chemical residual inside the new composite. All cured composites, regardless of temperature or heating time, contained approximately 3 wt% VOC. No statistical difference was found for either: (1) VOC loading across cured composites or (2) styrene emission into the air across cured composites despite different curing temperature and heating times. Styrene was the most abundant compound detected in the composite and in air. High styrene air concentration signals inhibited the author’s ability to determine if other non-styrene compounds were emitted into the air. Shortterm ventilation (2 hr) of the new composite reduced styrene air concentration to near zero in 10 min, but styrene levels rebounded when ventilation was halted. Due to the high styrene loading in the cured composite, it is expected that ventilation will only temporarily reduce VOC air levels in pipes, manholes, and other affected spaces. Chapter 3 includes inhalation health risk assessment due to chemical emission from CIPPs during manufacture and use. Publicly available worksite data for ultraviolet (UV)-light and steamCIPP installations were utilized and Monte Carlo simulation was applied.

Degree

Ph.D.

Advisors

Whelton, Purdue University.

Subject Area

Medical imaging|Polymer chemistry

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS