Mechxels: Leveraging Bistable Structures for Color Change, Character, and Image Display

Wan Kyn Chan, Purdue University

Abstract

A key aspect of color change is altering perceived value or intensity. This dissertation presents a methodology to achieve value change through mechanical means via the deflection of bistable structures. We create the Mechxel, two methods of mechanical pixel-based, reversible color change using 3D printed switchable multistability and bistable switch panels that augment the projected area a viewer perceives which enables the creation of image and character tessellation. Switchable multistability (SMS) arises from the combination of pre-strain and shape memory, allowing us to access multiple elastically programmed shapes at elevated temperatures with fast morphing and low actuation forces, while retaining high stiffness at room temperature. We design and manufacture SMS Mechxels using fused deposition modeling (FDM) 3D printing on the Ultimaker 3D printer in a bilayer layup of polylactic acid (PLA) with a [90/0] print direction while iteratively miniaturizing the physical size to enhance the resolution while also reducing the size of the overall tessellated display. Leveraging SMS properties programmed into each Mechxel, the projected area to a viewer will vary between the unit’s stable states, creating a difference in perceived value of coloration due to changes in area. To ease the tessellation process, we also introduce a tessellation user interface that maps images to their tessellated equivalent to reduce tessellation trial and error. This interface also calculates the number of Mechxels required in their respective states and the final physical size of the display. We then carry out image processing to justify this change in value between stable states and run preliminary optical character recognition. Inspired by mechanical bistable mechanisms, the bistable switch Mechxels utilize changes in a surface’s projected area to a viewer via changes in the angle of a bistable tile using a 5-by-5 grid for character replication and display. Comprising of three main components – two bistable switches, a colored tile and a base, design considerations were made to create an easy to assemble and replaceable 3D printed grid system that could be interacted with by audiences or easily electromechanically actuated. Using pixel-by-pixel comparisons and Sorensen-Dice coefficient, characters using the typeface Silkscreen were documented on these tiled grids yielding high similarity and low error when compared to their digital reference images in various positions and orientations. We also experiment with transitional waves as a promising means of actuation to change the Mechxel between their stable states. The Mechxels considered in this research introduce a new means of purely mechanical color change, character, and image display either leveraging the elastic properties of shape memory polymers (SMPs) or bistable mechanisms. With potential applications in passive morphing architecture, adaptive camouflage, and interactive aesthetic, Mechxels opens the door to limitless design possibilities through a new perspective into color change.

Degree

M.Sc.

Advisors

Arrieta, Purdue University.

Subject Area

Robotics|Aesthetics|Design|Industrial engineering|Mechanics|Polymer chemistry

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS