Fine-Grained Bayesian Zero-Shot Object Recognition
Abstract
Building machine learning algorithms to recognize objects in real-world tasks is a very challenging problem. With increasing number of classes, it becomes very costly and impractical to collect samples for all classes to obtain an exhaustive data to train the model. This limited labeled data bottleneck prevails itself more profoundly over fine grained object classes where some of these classes may lack any labeled representatives in the training data. A robust algorithm in this realistic scenario will be required to classify samples from well-represented classes as well as to handle samples from unknown origin. In this thesis, we break down this difficult task into more manageable sub-problems and methodically explore novel solutions to address each component in a sequential order.We begin with zero-shot learning (ZSL) scenario where classes that are lacking any labeled images in the training data, i.e., unseen classes, are assumed to have some semantic descriptions associated with them. The ZSL paradigm is motivated by analogy to humans’ learning process. We human beings can recognize new categories by just knowing some semantic descriptions of them without even seeing any instances from these categories. We develop a novel hierarchical Bayesian classifier for ZSL task. The two-layer architecture of the model is specifically designed to exploit the implicit hierarchy present among classes, in particular evident in fine-grained datasets. In the proposed method, there are latent classes that define the class hierarchy in the image space and semantic information is used to build the Bayesian hierarchy around these meta-classes. Our Bayesian model imposes local priors on semantically similar classes that share the same meta-class to realize knowledge transfer. We finally derive posterior predictive distributions to reconcile information about local and global priors and then blend them with data likelihood for the final likelihood calculation. With its closed form solution, our two-layer hierarchical classifier proves to be fast in training and flexible to model both fine and coarse-grained datasets. In particular, for challenging fine-grained datasets the proposed model can leverage the large number of seen classes to its advantage for a better local prior estimation without sacrificing on seen class accuracy.Side information plays a critical role in ZSL and ZSL models hold on a strong assumption that the side information is strongly correlated with image features. Our model uses side information only to build hierarchy, thus, no explicit correlation between image features is assumed. This in turn leads the Bayesian model to be very resilient to various side information sources as long as they are discriminative enough to define class hierarchy.When dealing with thousands of classes, it becomes very difficult to obtain semantic descriptions for fine grained classes. For example, in species classification where classes display very similar morphological traits, it is impractical if not impossible to derive characteristic visual attributes that can distinguish thousands of classes. Moreover, it would be unrealistic to assume that an exhaustive list of visual attributes characterizing all object classes, both seen and unseen, can be determined based only on seen classes. We propose DNA as a side information to overcome this obstacle in order to do fine grained zero-shot species classification.
Degree
Ph.D.
Advisors
Bingham, Purdue University.
Subject Area
Artificial intelligence|Conservation biology|Genetics|Logic|Systematic biology
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.