Roads, Deforestation, and GHG Emissions: The Role of Forest Governance and Carbon Tax Policy in Para and Mato Grosso, Brazil

Carlos Andres Fontanilla-Díaz, Purdue University

Abstract

This research explores the impact of road infrastructure on deforestation, the role of forest governance and a carbon tax/credit mechanism in mitigating the effect on land use change and subsequent GHG emissions, with application to the states of Pará and Mato Grosso in Brazil. Few studies have addressed how policies to protect forested land affect the rate of deforestation associated with road and infrastructure improvement. This research makes three main contributions to the literature of roads and deforestation: 1) the concept of cost of access to the “closest” market in terms of time (expressed in person hours per ten ton load) is introduced to reflect variations in the road network infrastructure; 2) development of empirical evidence of the role of forest governance in diminishing the rate of deforestation linked to roads, using data from Brazil; and 3) and assessment of the efficacy of a carbon tax/credit scheme for mitigating the impact of infrastructure investment on land use and resultant changes in GHG emissions. Access cost ranged between 0.01 and 3084 person hours per load, however 80 percent of the pixels measured less than 784 person hours across the three years analyzed (2003, 2013, and 2018). This measure facilitated a contrast in spatial accessibility due to road infrastructure across pixels within the same year and across years on a same pixel. The use of a fractional logit model allowed the incorporation of proportions of different land uses within a same pixel at the same resolution of other variables not available at the same fine scale. Strong forest governance reduced up to 25% the elasticities on forest lands with respect to access cost; in other words, the impact of roads on deforestation is reduced by one fourth when forest governance is strengthened. These larger impacts occur at the frontier where most of the efforts need to be addressed. Finally, provided a shock in road infrastructure, a carbon tax/credit level of $82/tCO2e permitted to abate an additional amount of GHG emissions estimated in 244 million tons of CO2e released due to changes in carbon stocks and flow emissions from agricultural activities induced from changes in road infrastructure. More importantly, this research provided insights of a proportion of GHG emissions that could be abated at different levels of a carbon tax/credit.

Degree

Ph.D.

Advisors

Foster, Purdue University.

Subject Area

Climate Change|Agriculture|Latin American Studies

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS