Validation of a Novel Ultra-Thin Wearable Electromyography Sensor Patch for Monitoring Submental Muscle Activity During Swallowing

Cagla Kantarcigil, Purdue University

Abstract

The aim of this study was to compare a newly developed ultrathin wearable surface electromyography (sEMG) sensors patch (patent pending, inventors: Lee & Malandraki) (i.e., experimental sensors) to commercially available and widely-used sEMG sensors (i.e., conventional sensors) in monitoring submental muscle activity during swallowing in healthy older adults. A randomized crossover design was employed to compare the performance of the experimental sensors with the performance of conventional snap-on sensors. Forty healthy older adults participated (24F; age range 53-85). Participants completed the same experimental protocol with both sensor types in a counterbalanced order. Swallow trials completed with both types of sensors included 5 trials of 5ml and 10ml water swallows. Comparisons were made on: a) signal related factors (i.e., signal-to-noise ratio, baseline amplitude, normalized amplitude of the swallow trials, and duration of sEMG burst during swallow trials); and b) safety and preclinical factors (safety/adverse effects, efficiency, and satisfaction/comfort). In terms of signal related factors (Aim 1), we hypothesized that the signal-to-noise ratio and baseline amplitude values acquired using the experimental sensors will not be inferior to the ones acquired using the conventional sensors. These hypotheses were tested using non-inferiority tests. Moreover, we hypothesized that the normalized amplitude values and the sEMG burst duration during swallow trials will be comparable/equivalent between the two sensor types. These hypotheses were tested using equivalency tests. In terms of safety and pre-clinical factors (Aim 2), we predicted that no adverse effects will be reported after using either type of sensors. We also hypothesized that sensor placement will be more efficient, and satisfaction/comfort level will be higher with the experimental sensors. These hypotheses were tested using paired t-tests. Overall, the findings supported our hypotheses for Aim 1. Results showed that the experimental sensors did not perform inferiorly to the conventional sensors based on signal-tonoise ratio (left sensors: t(39) = 3.95, p <0.0002; right sensors: t(39) = 2.66, p <0.0056) and baseline amplitude values (left sensors: t(39) = -7.72, p <0.0001; right sensors: t(39) = -7.43, p <0.0001). The normalized amplitude values were deemed equivalent for all swallow trials (5ml left: t_u = 4.25, t_l = -6.22; overall p-value <0.0001; 5ml right: t_u = 2.07, t_l = -4.06; overall pvalue <0.0224; 10ml left: t_u = 5.49, t_l = -7.20; overall p-value <0.0001; 10ml right: t_u = 3.36 t_l = -5.28; overall p-value <0.0012).The duration of sEMG burst was also deemed equivalent for all variables (5ml left: t_u = 9.48, t_l = -7.25; overall p-value <0.0001; 5ml right: t_u = 9.03, t_l = -6.35; overall p-value <0.0001; 10ml left: t_u = 6.75, t_l = -6.11; p-value <0.0001; 10ml right: t_u = 6.58, t_l = -6.23; overall p-value < 0.0001). In terms of safety and adverse effects (Aim 2, hypothesis #1), mild redness and itchiness occurred with the conventional sensors in six participants, whereas only one participant reported itchiness with the experimental sensors. No redness or skin irritation was observed or reported by any of the participants after the removal of the experimental sensors.

Degree

Ph.D.

Advisors

Malandraki, Purdue University.

Subject Area

Aging|Gerontology|Medicine|Neurosciences

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS