Tension Strength of Embed Plates with Welded Deformed Bars as Governed by Concrete Breakout

Ata Ur Rehman, Purdue University

Abstract

Embedded plates are used to support the external attachments such as heavy piping, brackets, sprinkler systems, or other equipment in nuclear power plants. The plates are welded with deformed reinforcing bars or deformed wires and anchored to reinforced concrete walls. The ACI code (ACI 318-19/ACI 349-13) provides design equations to calculate the anchor strength in concrete under tension load. These empirical equations are based on experiments conducted on headed studs, hooked bars, headed bolts, and adhesive anchors. With the lack of experimental data and code provisions on straight deformed reinforcing bars or deformed wires used as anchors, it is believed that anchoring bars with the embedment length as per code prescribed development length will provide sufficient strength to transfer tensile forces to the concrete, ignoring other failure modes such as concrete breakout. In this study, eight large scale group anchor tests were performed to evaluate their concrete breakout strength as per ACI 349-13. The test specimens were made with deformed reinforcing bar anchors (DRAs) and deformed wire anchors (DWAs). The tests included the effect of different bar types, bar sizes, and anchor spacings on the breakout capacities of such connections. The mean average back-calculated effective k value is 33.25 for DRAs and 36.26 for DWAs. The experimental study confirms that the axial tension capacity of embedded plates anchored to concrete using deformed reinforcing bars or deformed wires can be limited by concrete breakout strength.

Degree

M.Sc.

Advisors

Varma, Purdue University.

Subject Area

Civil engineering|Design|Mechanics|Nuclear engineering|Occupational safety

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS