Quantification of Greenhouse Gas Emission Rates for Point Sources and Cities Via Airborne Measurements

Kristian D Hajny, Purdue University

Abstract

Urban greenhouse gas emissions and urbanization are both expected to continue to increase in coming years. Accordingly, many cities have passed legislation or set goals for specific greenhouse gas reductions. However, high precision monitoring techniques are necessary to act on this legislation and to quantify the impact of effective mitigation strategies. Here we use the airborne mass balance technique to address this need. Chapter 3 focuses on 23 flights at 14 natural gas-fired power plants (NGPPs) using an aircraft-based mass balance technique and methane/carbon dioxide enhancement ratios (ΔCH4/ΔCO2) measured from stack plumes to quantify the unburned fuel. Current research efforts on the atmospheric impacts of natural gas (NG) have focused heavily on the production, storage/transmission, and processing sectors, with less attention paid to the distribution and end use sectors. By comparing the ΔCH4/ΔCO2 ratio measured in stack plumes to that measured downwind, we determined that, within uncertainty of the measurement, all observed CH4 emissions were stack-based, that is, uncombusted NG from the stack rather than fugitive sources. Measured CH4 emission rates (ER) ranged from 8 (± 5) to 135 (± 27) kg CH4/h (± 1σ), with the fractional CH4 throughput lost (loss rate) ranging from -0.039% (± 0.076%) to 0.204% (± 0.054%). We attribute negative values to partial combustion of ambient CH4 in the power plant. The average calculated emission factor (EF) of 5.4 (+10/-5.4) g CH4/million British thermal units (MMBTU) is within uncertainty of the Environmental Protection Agency (EPA) EFs. However, one facility measured during startup exhibited substantially larger stack emissions with an EF of 440 (+660/-440) g CH4/MMBTU and a loss rate of 2.5% (+3.8/-2.5%). Chapter 4 uses a slightly larger set of power plant flights, including most of those in Chapter 3, to assess the airborne mass balance technique. GHG quantification techniques must be highly precise to effectively monitor changes in GHG emissions to inform effective mitigation strategies and act on already existing goals and legislation towards reductions. Power plants are required to measure their CO2emissions using continuous emissions monitoring systems (CEMS), providing an effective “known” emission rate to compare against those measured downwind using the airborne mass balance approach. The mean absolute error between measured and CEMS emission rates was calculated as 20% ± 13 and the slope of measured emission rates against CEMS emission rates was 0.871 ± 0.033. Additionally, power plants generally have consistent production/emission profiles through the typical midday hours of the experiments. This allows us to consider back to back experiments at the same facility as replicate experiments to assess the precision of the mass balance technique too. Across the campaign, the average relative standard deviation (1σ/mean) was 25% ± 16. Chapter 5 focuses on measurements of greenhouse gases around New York City with 7 non-growing season research aircraft flights in 2018-2020 and used dispersion modelling to estimate CO2emissions from New York City with a simple scaling factor approach.

Degree

Ph.D.

Advisors

Michalski, Purdue University.

Subject Area

Climate Change|Atmospheric sciences|Energy|Marketing|Optics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS