Extraction and Integration of Physical Illumination in Dynamic Augmented Reality Environments
Abstract
Although current augmented, virtual, and mixed reality (AR/VR/MR) systems are facing advanced and immersive experience in the entertainment industry with countless media forms. Theses systems suffer a lack of correct direct and indirect illumination modeling where the virtual objects render with the same lighting condition as the real environment. Some systems are using baked GI, pre-recorded textures, and light probes that are mostly accomplished offline to compensate for precomputed real-time global illumination (GI). Thus, illumination information can be extracted from the physical scene for interactively rendering the virtual objects into the real world which produces a more realistic final scene in real-time. This work approaches the problem of visual coherence in AR by proposing a system that detects the real-world lighting conditions in dynamic scenes, then uses the extracted illumination information to render the objects added to the scene. The system covers several major components to achieve a more realistic augmented reality outcome. First, the detection of the incident light (direct illumination) from the physical scene with the use of computer vision techniques based on the topological structural analysis of 2D images using a live-feed 360° camera instrumented on an AR device that captures the entire radiance map. Also, the physics-based light polarization eliminates or reduces false-positive lights such as white surfaces, reflections, or glare which negatively affect the light detection process. Second, the simulation of the reflected light (indirect illumination) that bounce between the real-world surfaces to be rendered into the virtual objects and reflect their existence in the virtual world. Third, defining the shading characteristic/properties of the virtual object to depict the correct lighting assets with a suitable shadow casting. Fourth, the geometric properties of real-scene including plane detection, 3D surface reconstruction, and simple meshing are incorporated with the virtual scene for more realistic depth interactions between the real and virtual objects. These components are developed methods which assumed to be working simultaneously in real-time for photo-realistic AR. The system is tested with several lighting conditions to evaluate the accuracy of the results based on the error incurred between the real/virtual objects casting shadow and interactions. For system efficiency, the rendering time is compared with previous works and research. Further evaluation of human perception is conducted through a user study. The overall performance of the system is investigated to reduce the cost to a minimum.
Degree
Ph.D.
Advisors
Tuceryan, Purdue University.
Subject Area
Physics
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.