Experimental Study of a Low-Frequency Thermoacoustic Device

Ariana G Martinez, Purdue University

Abstract

An experimental study of a low-frequency transcritical thermoacoustic device has been conducted at Purdue University’s Maurice J. Zucrow Laboratories. The purpose of this study was to characterize the thermoacoustic response of transcritical R-218 and asses it’s feasibility for energy extraction and waste heat removal. This rig operated as a standing-wave configuration and achieved pressure amplitudes as high as 690 KPa (100 psi) at a ∆T of 150 K and a bulk pressure of 1.3 P/Pcr (3.43 MPa). To the author’s knowledge, this is the highest ever thermoacoustic pressure amplitude achieved in a non-reacting flow. The thermoacoustic response was characterized by varying ∆Tand bulk pressure parametrically. The effect of resonator length was characterized in a set of tests where resonator length and bulk pressure was varied parametrically at a single ∆T. Finally, the feasibility for energy extraction was assessed in a set of tests which characterized the ability of the working fluid to pump itself through a recirculation line with check valves. This set of tests showed that the working fluid was able to create self-sustained circulation by inducing a pressure differential across the check valves with the thermoacoustic response. This circulation was induced while still maintaining a significant pressure amplitude, demonstrating promising results as a feasible method for energy extraction and waste heat removal.

Degree

M.Sc.

Advisors

Heister, Purdue University.

Subject Area

Energy|Acoustics|Design|Fluid mechanics|Mechanics|Thermodynamics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS