Reimagining Human-Machine Interactions Through Trust-Based Feedback

Kumar Akash, Purdue University

Abstract

Intelligent machines, and more broadly, intelligent systems, are becoming increasingly common in the everyday lives of humans. Nonetheless, despite significant advancements in automation, human supervision and intervention are still essential in almost all sectors, ranging from manufacturing and transportation to disastermanagement and healthcare. These intelligent machines interact and collaborate with humans in a way that demands a greater level of trust between human and machine. While a lack of trust can lead to a human’s disuse of automation, over-trust can result in a human trusting a faulty autonomous system which could have negative consequences for the human. Therefore, human trust should be calibratedto optimize these human-machine interactions. This calibration can be achieved by designing human-aware automation that can infer human behavior and respond accordingly in real-time. In this dissertation, I present a probabilistic framework to model and calibrate a human’s trust and workload dynamics during his/her interaction with an intelligent decision-aid system. More specifically, I develop multiple quantitative models of human trust, ranging from a classical state-space model to a classification model based on machine learning techniques. Both models are parameterized using data collected through human-subject experiments. Thereafter, I present a probabilistic dynamic model to capture the dynamics of human trust along with human workload. This model is used to synthesize optimal control policies aimed at improving contextspecific performance objectives that vary automation transparency based on human state estimation. I also analyze the coupled interactions between human trust and workload to strengthen the model framework. Finally, I validate the optimal control policies using closed-loop human subject experiments. The proposed framework provides a foundation toward widespread design and implementation of real-time adaptive automation based on human states for use in human-machine interactions.

Degree

Ph.D.

Advisors

Jain, Purdue University.

Subject Area

Operations research|Robotics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS