Phase Field Modeling of Microstructure Evolution in Crystalline Materials
Abstract
The material responses and the deformation pattern of crystals are strongly influenced by their microstructure, crystallographic texture and the presence of defects of various types.In electronics, Sn coatings are widely used in circuits to protect conductors, reduce oxidation and improve solderability. However, the spontaneous growth of whiskers in Sn films causes severe system failures. Based on extensive experimental results, whiskers are observed to grow from surface grains with shallow grain boundaries. The underlying mechanism for these surface grains formation is crucial to predict potential whisker sites. A phase field model is coupled with a single crystal plasticity model and applied to simulate the grain boundary migration as well as the grain rotation process in Sn thin film, which are two possible mechanisms for surface grain formation. The grain boundary migration of three columnar grains is modeled and no surface grain is formed due to large plastic dissipation. In polycrystal Sn thin film, the nucleation of subgrains with shallow grain boundaries is observed for certain grain orientations on the film surface and the location of which corresponds to the regions with high strain energy density. From these simulations, it can be concluded that the grain rotation is the mechanism for whisker grain formation and the nucleated subgrains may be the potential whisker sites.Sn-based solders are also widely used in electronics packaging. The reliability and the performance of SAC (Sn-Ag-Cu) solders are of key importance for the miniaturization of electronics. The interfacial reaction between Cu substrates and Sn-based solders forms two types of brittle intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn.During the operation, the interconnecting solders usually experience thermal loading and electric currents. These environmental conditions result in the nucleation of voids in Cu3Sn layer and the growth of the IMCs. A phase field damage model is applied to model the fracture behavior in Cu/Sn system with different initial void densities and different Cu3Sn thickness. The simulation results show the fracture location is dependent on the Cu3Sn thickness and the critical stress for fracture can be increased by lowering the void density and Cu3Sn thickness.In alloys, the stacking fault energy varies with the local chemical composition. The effects of the stacking fault energy fluctuation on the strengthening of alloys are studied using phase field dislocation method (PFDM) simulations that model the evolution of partial dislocations in materials at zero temperature. Some examples are shown to study the dependency of the yield stress on the stacking fault energy, the decorrelation of partial dislocations in the presence of impenetrable and penetrable particles. Simulations of the evolution of partial dislocations in a stacking fault energy landscape with local fluctuations are presented to model the responses of high entropy alloys. A strong size dependency is observed with a maximum strength when the mean region size approaches the average equilibrium stacking fault width. The strength of high entropy alloys could be improved by controlling the disorder in the chemical misfit.
Degree
Ph.D.
Advisors
Koslowski, Purdue University.
Subject Area
Energy|Atomic physics|Condensed matter physics|Materials science|Mechanics|Physics
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.