Automated Height Measurement and Canopy Delineation of Hardwood Plantations Using UAS RGB Imagery

Aishwarya Chandrasekaran, Purdue University

Abstract

Recently, products of Unmanned Aerial System (UAS) integrated through SIFT algorithm and dense cloud matching using structure from motion has gained prominence with tree-level inventory maintenance in forestry. Various studies have been carried out by using UAS imagery to quantify and map forest structure of simple coniferous stands. However, most of the previous works employ methodologies that require manual inputs and lack of reproducibility to other forest systmes. Manual detection of trees and calculation of their attributes can be a time-consuming and complicated process which can be overcome with an automated technique applied by forest managers and/or landowners is highly desired to take full advantage of the readily available UAS remote sensing images. This study presents a methodology for automated measurements of tree height, crown area and crown diameter of hardwood species using UAS images. Different UAS platforms were employed to gather digital data of two hardwood plantations at Martell, Indiana. The resulting aerial images were used to generate the Digital Surface Model (DSM) and Digital Elevation Model (DEM) for the forest stand from which the Crown Height Model (CHM) was derived. The canopy height model can be inputted to the web platform deployed through shiny server (https://feilab.shinyapps.io/Crown/) to derive individual tree parameters automatically. The results show that this automated method provides a high accuracy in individual tree identification (F-score> 90%) and tree-level measurements (RMSEht<1.2m and RMSEcrn<1m). Moreover, treelevel parameter estimation for 4,600 trees were calculated in less than 30 minutes based on a postprocessed DSM from UAS-SfM derived images with minimal manual inputs. This study demonstrates the feasibility of automated inventory and measure of tree-level attributes in hardwood plantations with UAS images.

Degree

M.Sc.

Advisors

Shao, Purdue University.

Subject Area

Aerospace engineering|Forestry|Robotics|Transportation|Wood sciences

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS