A Methodology to Predict the Impact of Additive Manufacturing on the Aerospace Supply Chain

William E Bihlman, Purdue University

Abstract

This dissertation provides a novel methodology to assess the impact of additive manufacturing (AM) on the aerospace supply chain. The focus is serialized production of structural parts for the aeroengine. This methodology has three fundamental steps. First, a screening heuristic is used to identify which parts and assemblies would be candidates for AM displacement. Secondly, the production line is characterized and evaluated to understand how these changes in the bill of material might impact plant workflow, and ultimately, part and assembly cost. Finally, the third step employs an integer linear program (ILP) to predict the impact on the supply chain network. The network nodes represent the various companies – and depending upon their tier – each tier has a dedicated function. The output of the ILP is the quantity and connectivity of these nodes between the tiers. It was determined that additive manufacturing can be used to displace certain conventional manufacturing parts and assemblies as additive manufacturing’s technology matures sufficiently. Additive manufacturing is particularly powerful if adopted by the artifact’s design authority (usually the original equipment manufacturer – OEM) since it can then print its own parts on demand. Given this sourcing flexibility, these entities can in turn apply pricing pressure on its suppliers. This phenomena increasing has been seen within the industry. The results of this research should benefit three audiences. The first group is supply chain executives at the various aerospace OEMs. A second group is small and medium enterprises that represent the preponderance of the manufacturing supply base. Owners of these firms would be interested in their vulnerability to displacement due to this new manufacturing paradigm. Finally, due to the powerful nature of this disruptive technology, financial analysts would likely benefit from the conclusions of this research. Some elements of the findings can be applied to areas outside of aerospace.

Degree

Ph.D.

Advisors

Cheng, Purdue University.

Subject Area

Entrepreneurship

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS