Coupled Plasma, Fluid and Thermal Modeling of Low-Pressure and Microscale Gas Discharges

Gayathri Shivkumar, Purdue University

Abstract

Large scale and cost-efficient synthesis of carbon nanostructured materials has garnered tremendous interest over the last decade owing to their plethora of engineering and bio-science applications. One promising method is roll-to-roll radio frequency chemical vapor deposition and this work presents a computational investigation of the capacitively coupled radio frequency plasma in such a system. The system operates at moderate pressures (less than 30 mbar) with an 80 kHz square wave voltage input. The computational model aids the understanding of plasma properties and α − γ transition parameters which strongly influence the nanostructure deposition characteristics in the system. One dimensional argon and hydrogen plasma models are developed to characterize the effects of input voltage, gas pressure, frequency, and waveform on the plasma properties. A hybrid mode which displays the characteristics of both α and γ discharges is found to exist for the low cycle frequency 80 kHz square wave voltage input due to the high frequency harmonics associated with a square waveform. The threshold voltage at which the transition between the different regimes occurs is higher for hydrogen than for argon owing to its diatomic nature. Collision radiative modeling is performed to predict the argon emission intensity in the discharge gap. The results are found to lie within 16% of the optical emission spectroscopy measurements with better agreement at the center of the discharge, where the measurement uncertainty is low and the emission by ions is not significant. A quasi-zero dimensional steady state chemistry model which uses the hydrogen plasma properties as inputs predicts high concentrations of C2H, C2H2, C2H+3 , C2H+4 and C2H+6 during carbon nanostructure deposition.Carbon nanostructures are popularly used as field emitters. Field emission based microplasma actuators generate highly non-neutral surface discharges that can be used to heat, pump, and mix the flow through microchannels and offer an innovative solution to the problems associated with microcombustion. They provide a constant source of heat to counter the large heat loss through the combustor surface, they aid in flow transport at low Reynolds numbers without the use of moving parts, and they provide a constant supply of radicals to promote chain branching reactions. This work presents two actuator concepts for the generation of field emission microplasma, one with offset electrodes and the other with planar electrodes. They operate at input voltages in the 275 to 325 V range at a frequency of 1 GHz which is found to be the most suitable value for flow enhancement. The momentum and energy imparted by the charged particles to the neutrals as modeled by 2D Particle-In-Cell with Monte Carlo Collisions (PIC/MCC) are applied to actuate flow in microchannels using 2D Computational Fluid Dynamics modeling. The planar electrode configuration is found to be more suitable for the purpose of heating, igniting and mixing the flow, as well as improving its residence time through a 10 mm long microcombustor. The combustion of hydrogen and air with the help of 4 such actuators, each with a power consumption of 47.5 mW/cm, generates power with an efficiency of 28.8%. Coating the electrode surface with carbon nanostructures improves the combustion efficiency by a factor of 2.5 and reduces the input voltage by a factor of 6.5. Such microcombustors can be applied to all battery based systems requiring micropower generation with the ultimate goal of “generating power on a chip”.

Degree

Ph.D.

Advisors

Alexeenko, Purdue University.

Subject Area

Chemistry|Electrical engineering|Energy|Fluid mechanics|Materials science|Mathematics|Mechanics|Nanotechnology|Plasma physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS