Experimental Analysis of Positive Displacement Compressors for Refrigerator Freezer and Air Conditioning Application
Abstract
Vapor compression cycles are the most common method used to provide cooling to environments. In the residential area, refrigerator/freezers as well as air conditioners/heat pumps almost exclusively use vapor compression cycles. The driving force behind a vapor compression cycle is the compressor, where a variety of compressor types are used in the same application. While reciprocating compressors are found in the majority of refrigerator/freezers, scroll compressors are predominantly used in residential air conditioners. Yet other compressors have emerged as replacements due to increased efficiency. A R134a oil-free prototype scroll compressor and a R134a reciprocating compressor are operated in a hot-gas bypass test stand under refrigerator/freezer conditions to compare performance. Additionally, a R407C scroll compressor and a R410A rotary compressor are operated in a compressor calorimeter under air conditioning/heat pump conditions to compare performance. Experimental results show that the reciprocating compressor far outperforms the prototype scroll compressor in the refrigerator/freezer application, while the performance between the scroll and rotary compressors are almost equal in the air conditioning application.Pressure fluctuation at compressor discharge is also measured in the compressor calorimeter to determine feasibility of applying a novel muffling design to air conditioning compressors, although it was found that traditional muffling methods currently used are effective to a degree such that this new method is unwarranted. Data from the compressor calorimeter is also used to investigate the accuracy of the AHRI 540 10-Coefficient Correlation compressor map in predicting performance both inside and outside the tested operating conditions. The AHRI 10- Coefficient Correlation achieves high accuracy inside tested operating conditions but is inept in extrapolating performance, where other map correlations are more accurate.
Degree
M.Sc.
Advisors
Groll, Purdue University.
Subject Area
Industrial engineering|Polymer chemistry|Thermodynamics
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.