Privacy Protection and Mobility Enhancement in Internet

Ping Zhang, Purdue University

Abstract

The Internet has substantially embraced mobility since last decade. Cellular data network carries majority of Internet mobile access traffic and become the de facto solution of accessing Internet in mobile fashion, while many clean-slate Internet mobility solutions were proposed but none of them has been largely deployed. Internet mobile users increasingly concern more about their privacy as both researches and real-world incidents show leaking of communication and location privacy could lead to serious consequences. Just the communication itself between mobile user and their peer users or websites could leak considerable privacy of mobile user, such as location history, to other parties. Additionally, comparing to ordinary Internet access, connecting through cellular network yet provides equivalent connection stability or longevity gevity. In this research we proposed a novelty paradigm that leverages concurrent far-side proxies to maximize network location privacy protection and minimize interruption and performance penalty brought by mobility. To avoid the deployment feasibility hurdle we also investigated the root causes impeding popularity of existing Internet mobility proposals and proposed guidelines on how to create an economical feasible solution for this goal. Based on these findings we designed a mobility support system offered as a value-added service by mobility service providers and built on elastic infrastructure that leverages various cloud aided designs, to satisfy economic feasibility and explore the architectural trade-offs among service QoS, economic viability, security and privacy

Degree

Ph.D.

Advisors

Durresi, Purdue University.

Subject Area

Design|Communication|Computer science|Economics|Mass communications|Web Studies

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS