Spatial and Temporal Imaging of Exciton Dynamics And Transport in Two-Dimensional Semiconductors and Heterostructures by Ultrafast Transient Absorption Microscopy

Long Yuan, Purdue University

Abstract

Recently, atomically thin two-dimensional (2D) layered materials such as graphene and transition metal dichalcogenides (TMDCs) have emerged as a new class of materials due to their unique electronic structures and optical properties at the nanoscale limit. 2D materials also hold great promises as building blocks for creating new heterostructures for optoelectronic applications such as atomically thin photovoltaics, light emitting diodes, and photodetectors. Understanding the fundamental photo-physics process in 2D semiconductors and heterostructures is critical for above-mentioned applications.In Chapter 1, we briefly describe photo-generated charge carriers in twodimensional (2D) transition metal dichalcogenides (TMDCs) semiconductors and heterostructures. Due to the reduced dielectric screening in the single-layer or few-layer of TMDCs semiconductors, Columbo interaction between electron and hole in the exciton is greatly enhanced that leads to extraordinary large exciton binding energy compared with bulk semiconductors. The environmental robust 2D excitons provide an ideal platform to study exciton properties in TMDCs semiconductors. Since layers in 2D materials are holding by weak van de Waals interaction, different 2D layers could be assembled together to make 2D heterostructures. The successful preparation of 2D heterostructures paves a new path to explore intriguing optoelectronic properties.In Chapter 2, we introduce various optical microscopy techniques used in our work for the optical characterization of 2D semiconductors and heterostructures. These optical imaging tools with high spatial and temporal resolution allow us to directly track charge and energy flow at 2D interfaces.Exciton recombination is a critical factor in determining the efficiency for optoelectronic applications such as semiconductor lasers and light-emitting diodes. Although exciton dynamics have been investigated in different 2D semiconductor, large variations in sample qualities due to different preparation methods have prevented obtaining intrinsic exciton lifetimes from being conclusively established. In Chapter 3, we study exciton dynamics in 2D TMDCs semiconductors using ultrafast PL and transient absorption microscopy. Here we employ 2D WS2 semiconductor as a model system to study exciton dynamics due to the low defect density and high quantum yield of WS2. We mainly focus on how the exciton population affects exciton dynamics. At low exciton density regime, we demonstrate how the interlayer between the bright and dark exciton populations influence exciton recombination. At high exciton density regime, we exhibit significant exciton-exciton annihilation in monolayer WS2. When comparing with the bilayer and trilayer WS2, the exciton-exciton annihilation rate in monolayer WS2 increases by two orders of magnitude due to enhanced many-body interactions at single layer limit.Long-range transport of 2D excitons is desirable for optoelectronic applications based on TMDCs semiconductors. However, there still lacks a comprehensive understanding of the intrinsic limit for exciton transport in the TMDCs materials currently. In Chapter 4, we employ ultrafast transient absorption microscopy that is capable of imaging excitons transport with ~ 200 fs temporal resolution and ~ 50 nm spatial precision to track exciton motion in 2D WS2 with different thickness. Our results demonstrate that exciton mobility in single layer WS2 is largely limited by extrinsic factors such as charge impurities and surface phonons of the substrate. The intrinsic phonon-limited exciton transport is achieved in WS2 layers with a thickness greater than 20 layers.

Degree

Ph.D.

Advisors

Huang, Purdue University.

Subject Area

Energy|Analytical chemistry|Chemistry|Condensed matter physics|Materials science|Optics|Physics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS