Characterization of Two-Phase Flow Morphology Evolution During Boiling via High-Speed Visualization

Carolina Mira Hernandez, Purdue University

Abstract

Nucleate boiling is an efficient heat transfer mechanism that enables the dissipation of high heat fluxes at low temperature differences. Heat transfer phenomena during nucleate boiling are closely linked to the two-phase flow morphology that evolves in time and based on the operating conditions. In particular, the critical heat flux, which is the upper limit for the nucleate boiling regime, can be triggered by hydrodynamic mechanisms resulting from interactions between the liquid and vapor phases. The aim of this thesis is to characterize the two-phase flow morphology evolution during nucleate boiling at high heat fluxes in two configurations: pool boiling, and confined and submerged two-phase jet impingement. The characterization is performed via non-invasive, high-speed optical based diagnostic tools. Experimental characterization of liquid-vapor interfaces during boiling is often challenging because the rapidly evolving vapor structures are sensitive to invasive probes and multiple interfaces can occlude one another along a line of sight. In this thesis, a liquid-vapor interface reconstruction technique based on high-speed stereo imaging is developed. Images are filtered for feature enhancement and template matching is used for determining the correspondence of local features of the liquid-vapor interfaces between the two camera views. A sampling grid is overlaid on the reference image and windows centered at each sampled pixel are compared with windows centered along the epipolar line in the target image to obtain a correlation signal. To enhance the signatures of true matches, the correlation signals for each sampled pixel are averaged over a short time ensemble correlation. The three-dimensional coordinates of each matched pixel are determined via triangulation, which yields a set of points in the physical world representing the liquid-vapor interface. The developed liquid-vapor interface reconstruction technique is a high-speed, flexible and non-invasive alternative to the various existing methods for phase-distribution mapping. This technique also has the potential to be combined with other optical-based diagnostic tools, such as tomographic particle image velocimetry, to further understand the phase interactions. The liquid-vapor interface reconstruction technique is used to characterize liquid-vapor interfaces above the heated surface during nucleate pool boiling, where the textured interface resulting from the boiling phenomena and flow interactions near the heated surface is particularly suited for reconstruction. Application of the reconstruction technique to pool boiling at high heat fluxes produces a unique quantitative characterization of the liquid-vapor interface morphology near heated surface. Analysis of temporal signals extracted from reconstructions indicate a clear transition in the nature of the vapor flow dynamics from a plume-like vapor flow to a release mode dominated by vapor burst events. Further investigation of the vapor burst events allows identification of a characteristic morphology of the vapor structures that form above the surface that is associated to the square shape of the heat source. Vapor flow morphology characterization during pool boiling at high heat fluxes can be used to inform vapor removal strategies that delay the occurrence of the critical heat flux during pool boiling. As compared to pool boiling, nucleate boiling can be sustained up to significantly higher heat fluxes during two-phase jet impingement. The increases in critical heat flux are explained via hydrodynamic mechanisms that have been debated in the literature. The connection between two-phase flow morphology and the extension of nucleate boiling regime is investigated for a single subcooled jet of water that impinges on a circular heat source via high-speed visualization from two synchronized top and side views of the confinement gap.

Degree

Ph.D.

Advisors

Weibel, Purdue University.

Subject Area

Fluid mechanics|Mechanics|Medical imaging|Thermodynamics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS