Investigation of the Effects of Beta-Casein Protein Variants on Lactose Maldigestion

Monica Ramakrishnan, Purdue University

Abstract

Background information: Lactose is a disaccharide found in milk and milk products. Lactose is digested by the enzyme lactase. Lactase non-persistence is a genetic trait in which individuals have low lactase activity. Approximately 70 percent of the world population is lactase non-persistent. It is a major cause of lactose maldigestion. An increase of 20 ppm hydrogen in breath within six hours of a lactose challenge dose (0.5 g of lactose per kg bodyweight) indicates lactose maldigestion. On the other hand, lactose intolerant individuals experience abdominal pain, bloating, diarrhea, and flatulence on consuming dairy. Therefore, lactose intolerant individuals avoid milk, which is a rich source of calcium. Consequently, lactose intolerance has been associated with reduced calcium intake and low bone mineral density. There are two mechanisms for lactose intolerance. The first mechanism is dependent on lactose dose and the second one is independent of lactose. Recently, A1 and A2 β-caseins have been associated with lactose intolerance. Studies conducted in China, New Zealand and Australia demonstrated fewer symptoms on consumption of milk containing only A2 β-casein as compared to milk containing both A1 and A2 β-casein. However, no study was conducted in the population residing in United States, where crossbred cows producing milk containing both A1 and A2 β-casein is the norm. Moreover, no study compared tolerance and digestion on consuming milk with different proportions of A1 and A2 β-casein. Lactose intolerant individuals can include A2 milk in their diet to meet the calcium requirement, if milk containing only A2 β-casein causes fewer symptoms and less maldigestion. Objectives: 1. To determine if a single meal of A2 milk containing only A2 β-casein would be better tolerated, producing fewer GI symptoms and less maldigestion, than conventional milk containing 75 percent A1 β-casein and 25 percent A2 β-casein 2. To determine if a single meal of Jersey milk containing 25 percent A1 β-casein and 75 percent A2 β-casein would produce less maldigestion and intolerance, than conventional milk containing 75 percent A1 β-casein and 25 percent A2 β-casein 3. To determine if the gastric emptying time of milk containing only A2 β-casein and milk containing 75 percent A1 β-casein and 25 percent A2 β-casein was different 4. To determine if inflammation, maldigestion and intolerance is lower with a two-week daily consumption of milk containing only A2 β-casein as compared to milk containing 75 percent A1 β-casein and 25 percent A2 β-casein Methods: Three randomized, double-blinded, crossover trials were conducted. The first study was conducted to determine tolerance and digestion of milk containing different proportions of A1 βcasein and A2 β-casein in subjects residing in the United States. There were four milk interventions in the study: A2 milk (milk containing 100% A2 β-casein), Jersey milk (milk containing 25%/75% A1/A2 β-casein), conventional milk (milk containing 75%/25% A1/A2 β-casein) and lactose-free milk (milk containing 60%/40% A1/A2 β-casein). Lactose intolerance in subjects was determined using a Qualifying Lactose Challenge Symptom Score after a challenge milk dose of 0.5 g of lactose/kg bodyweight. Subjects were screened for lactose maldigestion with a six-hour Hydrogen Breath Test.

Degree

Ph.D.

Advisors

Saviano, Purdue University.

Subject Area

Medical imaging|Medicine|Public health

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS