The effect of low cycle fatigue cracks and loading history on high cycle fatigue threshold

Monty Allen Moshier, Purdue University

Abstract

High cycle fatigue (HCF) has been of great concern of late in light of the many HCF gas turbine engine failures experienced by the U.S. Air Force. Due to the high frequency, failures occur rapidly when components sustain damage from other sources. Low cycle fatigue (LCF) can initiate cracks that produce such damage. This study investigates the HCF threshold of Ti-6A1-4V when naturally initiated small surface cracks (2a = 25 μm–600 μm) are present. Small surface cracks are initiated in notched specimens using two different LCF loading histories at room temperature and 10 Hz. Direct current potential difference (DCPD) is used to detect crack initiation. Surface crack measurements are made using a scanning electron microscope prior to HCF testing. Heat tinting prior to HCF testing is used to mark the crack front to allow for post fracture crack measurements. HCF thresholds at R = 0.1 and R = 0.5 are determined for each specimen using step loading at room temperature and 600 Hz. Additionally, the HCF threshold is measured at R = 0.1 for specimens with small cracks that have been stress relief annealed to eliminate residual stresses and load history. Long crack thresholds are determined using a similar step loading procedure at R = 0.1 and R = 0.5 for specimens which have been precracked using a range of Kmax. Long crack threshold measurements are also determined for specimens which have been precracked using a range of Kmax, but stress relief annealed prior to testing. Comparisons show that HCF threshold measurements, when naturally initiated small cracks are present, are dependent on the load histories that are used to initiate the cracks. Further comparisons show that the measured small crack thresholds follow similar trends for load history effects which occur in the long crack threshold data. Additionally, it is found that thresholds can be measured free of load history effects by using a stress relief annealing process after the precracking and prior to the threshold testing.

Degree

Ph.D.

Advisors

Hillberry, Purdue University.

Subject Area

Aerospace materials|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS