Three-dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustor
Abstract
Ignition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet penetration, vortex generation, flame and shock propagation and interaction. It has been considered a useful approach for lean, low-NO x combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition constant-volume combustor (CVC) rig established at the Combustion and Propulsion Research Laboratory (CPRL) of the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends, with pre-chamber being operated with slightly rich blends. Five operating and design parameters were investigated with respect to their effects on ignition timing. Different pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30% methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917 m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is investigated using a detailed mechanism with 21 species and 84 elementary reactions (DRM19). To speed up the kinetic process adaptive mesh refinement (AMR) based on velocity and temperature and multi-zone reaction technique is used. With 3D numerical simulations, the present work explains the effects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a specific set of fuels. An innovative post processing technique is developed to predict and understand the characteristics of ignition in 3D space and time. With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A which is the relatively more reactive fuel blend. For Fuel-B which is relatively less reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered stationary jet. Inclusion of active radicals in pre-chamber combusted product, decreases the ignition delay when compared with only the stable species in pre-chamber combusted product. The effects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame interaction increases heat release rate by increasing mixing (increase the amount of deposited vorticity on flame surface) and flame stretching. The heat release rate is found to be maximum just after fast-slow interaction. For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is considered for Fuel-B with three different pre-chamber traverse speeds. Fuel-B fails to ignite within the simulation time for all the traverse speeds. Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels when compared with relatively lower initial CVC temperature (300 K). For initial temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure. A specific range of pre-chamber combusted products mass fraction, CVC chamber fuel mass fraction and temperature are found at ignition point for Fuel-A which were liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more complex at room temperature initial condition. No simple conclusions could be made about the range of pre-chamber and CVC chamber mass fractions at ignition point.
Degree
M.S.M.E.
Advisors
Nalim, Purdue University.
Subject Area
Mechanical engineering
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.