A numerical study of laminar flames propagating in stratified mixtures
Abstract
Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate (CTh) is shown to be a parameter that determines the effect of extra thermal diffusion by mixture stratification on flame propagation. Smaller values reflect less impact of stratification. For the cases considered, the values of CTh are quite small. This work suggests that employing the laminar flame speed from a homogeneous mixture to approximate the flame speed (and flame structure) in thermally and compositionally stratified mixtures is reasonable for hydrocarbon/air and hydrogen/air mixtures.
Degree
M.S.M.E.
Advisors
Abraham, Purdue University.
Subject Area
Computer Engineering|Mechanical engineering|Energy
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.