Particle swarm optimization applied to real-time asset allocation

Joshua Reynolds, Purdue University

Abstract

Particle Swam Optimization (PSO) is especially useful for rapid optimization of problems involving multiple objectives and constraints in dynamic environments. It regularly and substantially outperforms other algorithms in benchmark tests. This paper describes research leading to the application of PSO to the autonomous asset management problem in electronic warfare. The PSO speed provides fast optimization of frequency allocations for receivers and jammers in highly complex and dynamic environments. The key contribution is the simultaneous optimization of the frequency allocations, signal priority, signal strength, and the spatial locations of the assets. The fitness function takes into account the assets' locations in 2 dimensions, maximizing their spatial distribution while maintaining allocations based on signal priority and power. The fast speed of the optimization enables rapid responses to changing conditions in these complex signal environments, which can have real-time battlefield impact. Results optimizing receiver frequencies and locations in 2 dimensions have been successful. Current run-times are between 450ms (3 receivers, 30 transmitters) and 1100ms (7 receivers, 50 transmitters) on a single-threaded x86 based PC. Run-times can be substantially decreased by an order of magnitude when smaller swarm populations and smart swarm termination methods are used, however a trade off exists between run-time and repeatability of solutions. The results of the research on the PSO parameters and fitness function for this problem are demonstrated.

Degree

M.S.

Advisors

Christopher, Purdue University.

Subject Area

Computer Engineering|Electrical engineering|Artificial intelligence

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS