Machining as a mechanical property test revisited
Abstract
There is much need for data on mechanical behavior of metals at high strains and strain rates. This need is dictated by modeling of processes like forming and machining, wherein the material in the deformation zone is subjected to severe deformation conditions atypical of conventional material property tests such as tension and torsion. Accurate flow stress data is an essential input for robust prediction of process outputs. Similar requirements arise from applications in high speed ballistic penetration and design of materials for armor. Since the deformation zone in cutting of metals is characterized by unique and extreme combinations of strain, strain rate and temperature, an opportunity exists for using plane-strain cutting as a mechanical property test for measuring flow properties of metals. The feasibility of using plane-strain cutting to measure flow properties of metals is revisited in the light of recent data showing controllability of the deformation conditions in chip formation by systematic variation of process input parameters. A method is outlined as to how the deformation conditions can be varied by changing the process parameters. The method is applied to cutting of commercially pure copper (FCC), iron (BCC) and zinc (HCP). Forces and chip geometries are measured, in conjunction with particle image velocimetry characterization of the deformation using high speed image sequences. The flow stresses are estimated from these measurements. The measured flow stress and its dependence on strain are shown to agree well with prior measurements of these parameters using conventional tests, and flow stress inferred from hardness characterization. The method is also demonstrated to be able to measure properties of metals that recrystallize at room temperature (zinc), wherein quasi-static tests predict much lower strength. Sources of variability and uncertainty in the application of this measurement technique are discussed. Future work in the context of further evaluation of this measurement approach is proposed.
Degree
M.S.I.E.
Advisors
Chandrasekar, Purdue University.
Subject Area
Engineering|Mechanical engineering|Materials science
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.