The prediction of airborne and structure-borne noise potential for a tire

Nicholas Y Sakamoto, Purdue University

Abstract

Tire/pavement interaction noise is a major component of both exterior pass-by noise and vehicle interior noise. The current testing methods for ranking tires from loud to quiet require expensive equipment, multiple tires, and/or long experimental set-up and run times. If a laboratory based off-vehicle test could be used to identify the airborne and structure-borne potential of a tire from its dynamic characteristics, a relative ranking of a large group of tires could be performed at relatively modest expense. This would provide a smaller sample set of tires for follow-up testing and thus save expense for automobile OEMs. The focus of this research was identifying key noise features from a tire/pavement experiment. These results were compared against a stationary tire test in which the natural response of the tire to a forced input was measured. Since speed was identified as having some effect on the noise, an input function was also developed to allow the tires to be ranked at an appropriate speed. A relative noise model was used on a second sample set of tires to verify if the ranking could be used against interior vehicle measurements. While overall level analysis of the specified spectrum had mixed success, important noise generating features were identified, and the methods used could be improved to develop a standard off-vehicle test to predict a tire's noise potential.

Degree

M.S.M.E.

Advisors

Bolton, Purdue University.

Subject Area

Mechanical engineering|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS