Numerical simulation of hydrogen plasma in MPCVD reactor

Di Huang, Purdue University

Abstract

A numerical study was conducted to build a model able to estimate the plasma properties under different working conditions for pure hydrogen plasma in a MPCVD reactor. A plasma model based on standing wave assumption and a linear estimation of ne and coupled the EM simulation, heat transfer simulation and UDF calculations of plasma properties was built in COMSOL Muitiphysics and tested with six different working conditions. The reliability of COMSOL EM solver was tested through comparing the simulation results with a benchmark EM solver, ANSYS HFSS. The validities of two assumptions made about the electrical field, standing wave assumption and sinusoidal oscillation field assumption, were tested by a PDE solver in COMSOL for utilizing the drift-diffusion model of ne.

Degree

M.S.A.A.

Advisors

Alexeenko, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS