Upper-stratospheric glider flights for low-g experimentation

Adam Loesch, Purdue University

Abstract

Near Space Corporation's fully-operational High Altitude Shuttle System (HASS) consists of a glider carried to 100,000ft by a high altitude balloon. Originally intended to safely return sensitive instrumentation from altitude back to Earth, the glider provides the opportunity to fly ultra-smooth "parabolas" for low-g experimentation. This work models the dynamic behavior of the glider using aerodynamic parameters of a scaled F-4 Phantom to determine the optimal flight path during descent. Low-g parabola and pull-up pairs are flown until the altitude drops below 18km, approaching the maximum altitude of controlled airspace. With this model, it was found that eleven low-g parabolas can be flown to yield 137 seconds of total test time at an average RMS g-loading of 4.9x10 -2. By changing the weighting factor of the merit function, a tradeoff can be made to increase total test time at the expense of increasing g-loading, or vice-versa. A preliminary design exercise for an improved glider is conducted based on lessons learned from the scaled F-4 flight results.

Degree

M.S.A.A.

Advisors

Collicott, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS