Steady computational analysis of shrouded plug nozzle flows using unequal stream pressures
Abstract
This study focuses on the effects of unequal core and bypass stream feed pressures in a high pressure ratio, two-stream nozzle notionally designed for supersonic business jet applications. Whereas previous analysis used a measured mass average pressure of the core and bypass streams, equal pressures were not exactly maintained in the experimental work and the effect of the imbalance is the primary motivation for the present study. The plug nozzle geometry used is a sub-scale model of a Gulfstream Aerospace Corporation concept that features an extended shroud. It uses two inlet streams, representing core and bypass streams from a turbofan engine. Nozzle pressure ratios range from unity to 6.23. Experimental measurements included pressure taps on the plug and shroud, schlieren and shadowgraph figures, mass flows for both streams, and thrust values. The computational analysis employed the General Equation and Mesh Solver, or GEMS code. Previous computational analysis was performed by Kapilavai, giving a basis analysis involving grid generation and refinement, error convergence studies, axisymmetric analysis, and unsteady computations. Unequal core and bypass stream pressure or swirl in the core stream is used to replicate experimental data and assess performance. The results of using these conditions were explored, including pressure on the plug and shroud, shock characteristics, separation and recirculation zones, mass flows and discharge coefficients, and thrust efficiencies.
Degree
M.S.E.
Advisors
Heister, Purdue University.
Subject Area
Aerospace engineering
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.