Changes in combustion behavior of liquid fuels due to the addition of small amounts of ammonia borane or nano aluminum

Mark A Pfeil, Purdue University

Abstract

Both ammonia borane and nano aluminum as additives to liquid fuels are investigated. Both fundamental droplet combustion experiments and experiments using an unstable liquid rocket combustor are used to study the effects these additives on the combustion behavior. The liquid fuels consist of ethanol and JP-8. The droplet experiments consist of both visual and OH high speed planar laser–induced fluorescence measurements. Simple combustion models are incorporated as well to provide further understanding. It is found that ammonia borane increases the regression rate of a single ethanol droplet. Evidence indicates that hydrogen gas is released throughout the combustion process of the droplet and influences the combustion behavior notably. Laser diagnostics indicate that changes in flame structure occur. The other components of ammonia borane affect the combustion behavior of the droplet, especially near the end of the droplet lifetime, causing the droplet to shatter. Nano aluminum has very little impact on the combustion behavior of single fuel droplets of JP-8 and ethanol. Nano aluminum is observed to combust only when a surfactant, Neodol, is present which produces gas generation and bubble formation within the droplet. Combustor experiments show similar trends as the droplet combustion experiments. Ammonia borane has a notable impact on the combustion stability of the system allowing it to be unstable for more combustor geometries. It is shown that ammonia borane addition produces a bimodal unsteady energy release within the combustor while the neat fuel does not. This combustion behavior allows for the increased amount of unstable combustor geometries. Nano aluminum has a small impact on the combustion stability of the system causing pressure oscillations to increase.

Degree

M.S.A.A.

Advisors

Anderson, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS