Development of composite solid propellent using dicyclopentadien binder
Abstract
Through the history of composite solid propellant binders new chemicals are introduced as binders to improve upon the previous generation. Sometimes this is done to improve upon the flaws or shortcomings of a previous binder. Other time it is to meet a new set of requirements desired by industry. Dicyclopentadiene (DCPD) is a hydrocarbon monomer being considered for its potential as a new binder in the composite propellant industry. The binder of a composite solid propellant is arguably the most important feature of the propellant. It is the binder that provides the majority of the structural characteristics of the propellant while also contributing itself as fuel to the combustion process. A binder in composite propellants must also be able to accept the introduction of a large quantity of solid filler; oxidizer, fuel, and other energetic and non-energetic particles. Many of the composite propellants used in industry today have over 80% of their weight composed of non-binder solid or liquid fillers. These requirements must be met by the binder in some form or fashion to produce a propellant able to compete with binders currently in use. When DCPD is polymerized it produces an extremely tough plastic with excellent tensile and impact strength. Experimentation has found that DCPD is able to support a large quantity of solid materials, over 80% weight of the mixture, while still retaining a great portion of its original strength. When compared to another similarly loaded binder currently used in industry, Hydroxyl-Terminated Polybutadiene (HTPB), it was found that DCPD composite propellant had nearly 1.5 times the stress capacity while still exhibiting over 75% of the strain capacity of HTPB based composite propellant. In addition it was also shown that DCPD composite propellant allows for tailoring of its mechanical properties with the addition of plasticizers. The DCPD based composite propellant also exhibits a burning rate nearly twice that HTPB. These factors combine make Dicyclopentadiene based composite propellant a potentially formidable competitor in the composite propellant industry.
Degree
M.S.A.A.
Advisors
Heister, Purdue University.
Subject Area
Aerospace engineering
Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server.