Innovative Mixed Reality Advanced Manufacturing Environment With Haptic Feedback

Jesse C Satterwhite, Purdue University

Abstract

In immersive eLearning environments, it has been demonstrated that incorporating haptic feedback improves the software's pedagogical effectiveness. Due to this and recent advancements in virtual reality (VR) and mixed reality (MR) environments, more immersive, authentic, and viable pedagogical tools have been created. However, the advanced manufacturing industry has not fully embraced mixed reality training tools. There is currently a need for effective haptic feedback techniques in advanced manufacturing environments. The MR-AVML, a proposed CNC milling machine training tool, is designed to include two forms of haptic feedback, thereby providing users with a natural and intuitive experience. This experience is achieved by tasking users with running a virtual machine seen through the Microsoft HoloLens and interacting with a physical representation of the machine controller. After conducting a pedagogical study on the environment, it was found that the MR-AVML was 6.06% more effective than a version of the environment with no haptic feedback, and only 1.35% less effective than hands-on training led by an instructor. This shows that the inclusion of haptic feedback in an advanced manufacturing training environment can improve pedagogical effectiveness.

Degree

M.S.E.C.E.

Advisors

El-Mounayri, Purdue University.

Subject Area

Computer Engineering|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS