Orbit Maintenance Strategies for Sun-Earth/Moon Libration Point Missions: Parameter Selection for Target Point and Cauchy-Green Tensor Approaches

Vivek Muralidharan, Purdue University

Abstract

The libration point orbits in the Sun-Earth/Moon system are formed by concurrent gravitational influences by various celestial bodies, originating in a nonlinear dynamical regime. Coupled with the unstable nature of the orbit, the impact of any perturbations are expected to increase rapidly. The feasibility of a flow-based, Cauchy-Green tensor control strategy for station-keeping is examined. An orbit consistent with the mission objectives is selected for examination. The station-keeping process is stochastic, thus Gaussian random errors are introduced for simulation. The evolution of a velocity perturbation over time is monitored, beyond which the attainable state in the accessible region nearest to the target state is employed as a feedback to compute the necessary full, three-component corrective maneuver. The application and appropriateness of single axis control maneuvers for orbit maintenance are also evaluated. The selection procedure for certain parameters such as tolerances and weighting values are developed to incorporate the available dynamical information, yielding a versatile and straightforward strategy. Weighting matrices within the target point approach are effective in influencing the station-keeping costs as well as size and direction of maneuvers. Moreover, selection of appropriate tolerance values in the application of the Cauchy-Green tensor exploits the dominant stretching direction of the perturbation magnitude to inform the maneuver construction process. The work is demonstrated in the context of the upcoming Aditya-1 mission to a Sun-Earth/Moon L1 halo orbit for solar observations and the James Webb Telescope to a Sun-Earth/Moon L2 halo orbit for astronomy.

Degree

M.S.A.A.

Advisors

Howell, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS