Investigation of Noise and Vibration in Tires Through Analytical Modeling, Tests and Simulations

Rui Cao, Purdue University

Abstract

Tire noise and vibration is an interesting topic, with more and more people paying attention to this issue. Tire noise can both propagate into the vehicle interior and radiate directly toward the immediate environment. Tire noise is not only related to vehicle passengers' comfort but also affects the residential or working area near highways, especially in high population density regions. The emerging electric vehicles also emphasize tires' role in vehicle Noise Vibration and Harshness (NVH) since power-train noises are significantly reduced. The study in this research focuses on the noise and vibration of tires from the low to high frequency range, typically from 60 kHz to 2 kHz. From the analytical point of view, forced vibration of a fully coupled 2D structural-acoustical model is presented and a 3D structural model is also investigated for various input conditions. Both circumferential and cross-sectional shearing motions in the analytical tire models can be observed. Static tire surface mobilities were also measured to verify the findings from the developed models. On the experimental side, the loading effect on tire noise radiation was studied, where applied loads ranged from 500 lbs to 1300 lbs. Results indicate that sound radiation is usually proportional to the loading, except between 1.1 kHz to 1.7 kHz where the load-noise relation is reversed. In addition, tire noise generated by road surface discontinuities was also studied experimentally. As expected, a broadband increase of the noise spectrum can be observed below 1 kHz compared to the noise on a continuous surface. However, the difference tends to diminish above 1 kHz except in a certain narrow frequency band depending on the particular tire tested. High frequency waves and motions in tire cross-sectional directions were identified as occurring in the frequency range of interest. A two-dimensional cross-sectional analytical tire model was proposed for further investigations, in order to verify the relation among high frequency tire noise properties and the fast propagating waves and cross-sectional motions in tires. Finally, a fully coupled finite element tire-wheel model was developed to simulate the tire deformation under static vertical loading and to explore the influence of various excitation forces. The forces or accelerations, depending on the boundary conditions, at the wheel center can be calculated from the tire model up to 500 Hz. The results can be potentially used as input for vehicle full body simulations, thus accelerating the optimization process of new product development.

Degree

Ph.D.

Advisors

Bolton, Purdue University.

Subject Area

Mechanical engineering|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS