Averaged Solar Radiation Pressure Modeling for High Area-to-Mass Ratio Objects in Geostationary Space

Roshan Thomas Eapen, Purdue University

Abstract

Space Situational Awareness is aimed at providing timely and accurate information of the space environment. This was originally done by maintaining a catalog of space objects states (position and velocity). Traditionally, a cannonball model would be used to propagate the dynamics. This can be acceptable for an active satellite since its attitude motion can be stabilized. However, for non-functional space debris, the cannonball model would disappoint because it is attitude independent and the debris is prone to tumbling. Furthermore, high area-to-mass ratio objects are sensitive to very small changes in perturbations, particularly those of the non-conservative kind. This renders the cannonball model imprecise in propagating the orbital motion of such objects. With the ever-increasing population of man-made space debris, in-orbit explosions, collisions and potential impacts of near Earth objects, it has become imperative to modify the traditional approach to a more predictive, tactical and exact rendition. Hence, a more precise orbit propagation model needs to be developed which warrants a better understanding of the perturbations in the near Earth space. The attitude dependency of some perturbations renders the orbit-attitude motion to be coupled. In this work, a coupled orbit-attitude model is developed taking both conservative and non-conservative forces and torques into account. A high area-to-mass ratio multi-layer insulation in geostationary space is simulated using the coupled dynamics model. However, the high fidelity model developed is computationally expensive. This work aims at developing a model to average the short-term solar radiation pressure force to perform computationally better than the cannonball model and concurrently have a comparable fidelity to the coupled orbit-attitude model.

Degree

M.S.A.A.

Advisors

Frueh, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS