Design, analysis, optimization and control of rotor tip flows

Cis Guy M. De Maesschalck, Purdue University

Abstract

Developments in turbomachinery focus on efficiency and reliability enhancements, while reducing the production costs. In spite of the many noteworthy experimental and numerical investigations over the past decades, the turbine tip design presents numerous challenges to the engine manufacturers, and remains the primary factor defining the machine durability for the periodic removal of the turbine components during overhaul. Due to the hot gases coming from the upstream combustion chamber, the turbine blades are subjected to temperatures far above the metal creep temperature, combined with severe thermal stresses induced within the blade material. Inadequate designs cause early tip burnouts leading to considerable performance degradations, or even a catastrophic turbine failure. Moreover, the leakage spillage, nowadays often exceeding the transonic regime, generates large aerodynamic penalties which are responsible for about one third of the turbine losses. In this view, the current doctoral research exploits the potential through the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics and manage the heat load distribution over the blade profile to improve the turbine efficiency and durability. Three main design strategies for unshrouded turbine blade tips were analyzed and optimized: tight running clearances, blade tip contouring and the use of complex squealer-like geometries. The altered overtip flow physics and heat transfer characteristics were simulated for tight gap sizes as low as 0.5\% down to 0.1\% of the blade height, occurring during engine transients and soon to be expected due to recent developments in active clearance control strategies. The potential of fully 3D contoured blade top surfaces, allowing to adapt the profile locally to the changing flow conditions throughout the camberline, is quantified. First adopting a quasi-3D approach and subsequently using a full 3D optimization. For the industrial rub-safe squealer profiles featuring cavities separated by upstanding rims, a topology-like multi-objective 3D optimization strategy is used to identify so far undiscovered, optimal blade tip profiles. Furthermore, the additional potential of the widely adopted shroud coolant injection just upstream of the rotor blade is examined. Specifically, the possibility of combining the beneficial effect of the purge flow in the overtip region while minimizing the detrimental influence on the upper passage vortex is explored. Eventually, a high-speed rotating turbine facility at the von Karman Institute was redesigned, allowing simultaneous testing of multiple distinct blade (tip) profiles mounted in separate sectors around the rotor annulus. Important considerations related with the balancing and precise clearance design are highlighted, arising from the complexity of such rainbow-rotor configuration. Moreover, approaches are described to integrate Reynolds-Averaged Navier-Stokes simulations to a priori estimate the errors induced by the finite spatial sampling and inherent limited sensor bandwidth. This research effort provided new insights into the overtip flow topology and aerothermal characteristics, identified new design strategies to create future turbines with enhanced aerodynamic efficiencies and reduced thermal loads, and paved the way for an elaborate experimental validation in a rotating turbine facility, at engine-matched conditions.

Degree

Ph.D.

Advisors

Paniagua, Purdue University.

Subject Area

Aerospace engineering|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS