Significance of specific force models in two applications: Solar sails to sun-earth L4/L5 and grail data analysis suggesting lava tubes and buried craters on the moon

Rohan Sood, Purdue University

Abstract

In the trajectory design process, gravitational interaction between the bodies of interest plays a key role in developing the over-arching force model. However, non-gravitational forces, such as solar radiation pressure (SRP), can significantly influence the motion of a spacecraft. Incorporating SRP within the dynamical model can assist in estimating the trajectory of a spacecraft with greater precision, in particular, for a spacecraft with a large area-to-mass ratio, i.e., solar sails. Subsequently, in the trajectory design process, solar radiation pressure can be leveraged to maneuver the sail-based spacecraft. First, to construct low energy transfers, the invariant manifolds are explored that form an important tool in the computation and design of complex trajectories. The focus is the investigation of trajectory design options, incorporating solar sail dynamics, from the Earth parking orbit to the vicinity of triangular Lagrange points. Thereafter, an optimization scheme assisted in investigating the ?V requirement to depart from the Earth parking orbit. Harnessing the solar radiation pressure, the spacecraft is delivered to the vicinity of the displaced Lagrange point and maintains a trajectory close to the artificial libration point with the help of the solar sail. However, these trajectories are converged in a model formulated as a three-body problem with additional acceleration from solar radiation pressure. Thus, the trajectories are transitioned to higher fidelity ephemeris model to account for additional perturbing accelerations that may dominate the sail-craft dynamics and improve upon the trajectory design process. Alternatively, precise knowledge of the motion of a spacecraft about a central body and the contribution of the SRP can assist in deriving a highly accurate gravity field model. The high resolution gravity data can potentially assist in exploring the surface and subsurface properties of a particular body. With the goal of expanding human presence beyond Earth, sub-surface empty lava tubes on other worlds form ideal candidates for creating a permanent habitation environment safe from cosmic radiation, micrometeorite impacts and temperature extremes. In addition, gravitational analysis has also revealed large buried craters under thick piles of mare basalt, shedding light on Moon's dynamic and hostile past. In this work, gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) are employed to detect the presence of potential empty lava tubes and large impact craters buried beneath the lunar maria.

Degree

Ph.D.

Advisors

Howell, Purdue University.

Subject Area

Geology|Aerospace engineering|Planetology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS