Spintronic device modeling and evaluation using modular approach to spintronics

Samiran Ganguly, Purdue University

Abstract

Spintronics technology finds itself in an exciting stage today. Riding on the backs of rapid growth and impressive advances in materials and phenomena, it has started to make headway in the memory industry as solid state magnetic memories (STT-MRAM) and is considered a possible candidate to replace the CMOS when its scaling reaches physical limits. It is necessary to bring all these advances together in a coherent fashion to explore and evaluate the potential of spintronic devices. This work creates a framework for this exploration and evaluation based on Modular Approach to Spintronics, which encapsulate the physics of transport of charge and spin through materials and the phenomenology of magnetic dynamics and interaction in benchmarked elemental modules. These modules can then be combined together to form spin-circuit models of complex spintronic devices and structures which can be simulated using SPICE like circuit simulators. In this work we demonstrate how Modular Approach to Spintronics can be used to build spin-circuit models of functional spintronic devices of all types: memory, logic, and oscillators. We then show how Modular Approach to Spintronics can help identify critical factors behind static and dynamic dissipation in spintronic devices and provide remedies by exploring the use of various alternative materials and phenomena. Lastly, we show the use of Modular Approach to Spintronics in exploring new paradigms of computing enabled by the inherent physics of spintronic devices. We hope that this work will encourage more research and experiments that will establish spintronics as a viable technology for continued advancement of electronics.

Degree

Ph.D.

Advisors

Datta, Purdue University.

Subject Area

Electrical engineering|Nanotechnology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS