Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

Saad Tanvir, Purdue University

Abstract

Nanofluids are liquids with stable suspension of nanoparticles. Limited studies in the past have shown that both energetic and catalytic nanoparticles once mixed with traditional liquid fuels can be advantageous in combustion applications, e.g., increased energy density and shortened ignition delay. Contradictions in existing literature, scarcity of experimental data and lack of understanding on how the added nanoparticles affect the physical properties as well as combustion characteristics of the resulting fuel motivated us to launch a detailed experimental and theoretical investigation. The surface tension of ethanol and n-decane based nanofluid fuels containing suspended nanoparticles were measured using the pendant drop method by solving the Young-Laplace equation. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size. This is because the Van der Waals forces between particles at the liquid/gas interface increases surface free energy that overcomes any electrostatic repulsion between the particles and increases surface tension. This present work also reports experimental analysis of the latent heat of vaporization ( Hfg) of nanofluids. Results show that the addition of Ag and Fe nanoparticles in water results is a substantial reduction in Hfg. On the contrary Al addition slightly increases Hfg. Similar observations are made for ethanol based nanofluids. Molecular dynamics simulations showed that the strength of bonding between particles and the fluid molecules is the governing factor in the variation of Hfg upon particle addition. The thermal conductivity was measured using KD2-Pro from Decagon Devices based on the transient line heat source method. The rheological properties of the ethanol and ethanol/nanoparticles suspensions are measured using a Stresstech® rotational rheometer. Both properties increased with increasing particle concentration. Trends are found to be consistent existing literature. Additionally, a droplet collision experiment was developed to understand the collision characteristics of nanofluids fuels, especially the effect of particle addition on collision regimes. It was found that as particle concentration increases, coalescence was seen over a wider the range of Webber numbers and collision parameters as compared to pure liquids. Enhancement in surface tension at room temperature conditions is hypothesized to be the main factor causing this shift. A primary goal of this study is to understand how particle addition impacts the combustion behavior of liquid fuels. A droplet stream flame was used to measure the burning rate of ethanol droplets with the addition of aluminum (80nm) and graphite nanoparticles (50nm and 100nm). Results indicate that as particle concentration is increased, the burning rate of the resulting nanofluid droplet also increases. The maximum enhancement of 140 % was observed with the addition of 3 wt.% 80nm aluminum nanoparticles. The burning rate enhancement is mainly attributed to the strong radiation absorption by the nanofluid fuels from the flame. Computational models were developed to determine the ratio of radiation retention by the entire depth of the fluid (volumetric absorptivity) using optical properties of both the particles and the fluid. Furthermore, the penetration of radiation within the nanofluid was quantified using the well-known Monte Carlo algorithm. Results indicate that radiation absorption by the hybrid droplet does play a role in the enhancement of burning rate. More importantly, the absorption is not uniform within the hybrid droplet. It is localized in the region near the droplet surface, promoting localized boiling. This mechanism is believed to be responsible for the observed increase in burning rate. An experimental as well as numerical investigation on the evaporation characteristics of nanofluid fuels was conducted. The present study aims to determine the contribution of near-Infrared (NIR) radiation (wavelength 2.3 μm) on the evaporation rates of ethanol based nanofluid fuel droplets. Studying pure evaporation allows for simplification of the vaporization process by eliminating the complexities that arise with the combustion of nanofluid fuels. Experimental results show an enhancement in vaporization rates of graphite in ethanol nanofluid droplets in the presence of a 2mW, 2300nm IR laser. The initial vaporization rates increased as a function of particle concentration. As particle concentration is increased, we witnessed enhanced deviation from the D2 Law. This is mainly attributed to the accumulation of particles at the droplets surface which leads to a continuously reducing evaporation rate. A theoretical investigation was conducted to isolate and quantify the effect of incident radiation on the vaporization rates of the nanofluid fuels. The effects of radiation absorption will be incorporated in the traditional droplet vaporization model. The Monte Carlo method coupled with Mie theory and Beer–Lambert law of volumetric absorption is used to estimate the radiation penetration into the nanofluid. The model predicts that with the introduction IR radiation, the vaporization rate of the nanofluid droplet is expected to increase as a function of particle concentration and time. This is due to rise in droplet surface temperature through higher radiation absorption near the droplet surface at higher particle loadings. The disparity in experimental and computation results arise from the omission of particle accumulation behavior from the computational model.

Degree

Ph.D.

Advisors

Qiao, Purdue University.

Subject Area

Alternative Energy|Aerospace engineering|Nanotechnology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS