Synthesis of Lithium Manganese Phosphate by Controlled Sol-Gel Method and Design of All Solid State Lithium Ion Batteries

Rani Vijaya Penumaka, Purdue University

Abstract

Due to the drastic increase in the cost of fossil fuels and other environmental issues, the demand for energy and its storage has risen globally. Rather than being dependent on intermittent energy sources like wind and solar energy, focus has been on alternative energy sources. To eliminate the need for fossil fuels, advances are being made to provide energy for hybrid electric vehicles (HEV), plug-in hybrid vehicles (PHEV) and pure electric vehicles (EV) thus providing scope for much greener environment. Hence, focus has been on development in lithium ion batteries to provide with materials that have high energy density and voltage. Ortho olivine lithium transitional metals are known to be abundant and inexpensive; these compounds are less noxious than other cathode materials. Advancement in research is being done in finding iron and manganese compounds as cathode materials for advanced technologies. However, Lithium manganese phosphates are known to suffer with poor electrochemical performances due the manganese dissolution in the organic liquid electrolyte due to Jahn-Teller Lattice distortion. This problem was tried to endorse in this thesis. In the second chapter by synthesizing nano sized cathode particles with good electronic conductivity, good performance was achieved. In the third chapter additive olivine cathode was synthesized my modified sol gel process. A wt. % of TMSP was added as an additive in the organic liquid electrolyte. By comparing the properties between the two kinds of electrolytes it was observed that by the addition of the additive in the organic electrolyte good electrochemical properties could be achieved hindering the Mn dissolution in the electrolyte. In the final chapter, a composite solid electrolyte was fabricated by using NASICON-type glass ceramic of Lithium aluminum titanium phosphate (LATP) with organic binder of Polyethylene oxide. The flexible solid electrolyte exhibited good ionic conductivity. An all solid state cell was fabricated using the composite solid electrolyte using LiMn2O4 as the symmetric electrodes. At different pressures, the performance of the solid state cell was studied.

Degree

M.S.M.E.

Advisors

Zhu, Purdue University.

Subject Area

Alternative Energy|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS