Energy transfer and localization in molecular crystals

Mitchell A Wood, Purdue University

Abstract

With the aim of developing new technologies for the detection and defeat of energetic materials, this collection of work was focused on using simulations to characterize materials at extremes of temperature, pressure and radiation. Each branch of the work here is collected by which material response is potentially used as the detectable signal. Where the chemical response is of interest, this work will explore the possibility of non-statistical chemical reactions in condensed-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different means of energy input: electric fields of various frequencies (100 − 4000cm−1) and strengths, and direct heating at various rates. It was found that non-equilibrium states can be created for short timescales when the energy input targets specific vibrations through the electric fields, and that equilibration eventually occurs even when the insults remain present. Interestingly, for strong fields these relaxation timescales are comparable to those of the initial chemical decomposition of the molecules. On similar timescales, we have studied the relaxation process of shock compressed molecules. Details of how energy localization, either from these vibrational or mechanical insults, affects the preferred uni- or multi-molecular reactions are discussed. These results provide insight into non-equilibrium or coherent initiation of chemistry in the condensed phase that would be of interest in fields ranging from catalysis to explosives. Without initiating reactions, the thermal response of a material subject to a mechanical stimulus can be used to inform on the chemical characteristics. Here MD simulations are performed to study how energy from an acoustic wave is localized in a composite material of a polymer and molecular crystal. Insight is provided on how the interface between these to materials will affect which component absorbs and localizes this insult energy. Furthermore these results provide an explanation to anomalous experimental results that subject similar composites to acoustic insults. In parallel efforts for the detection and defeat of explosives, we study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

Degree

Ph.D.

Advisors

Strachan, Purdue University.

Subject Area

Physical chemistry|Condensed matter physics|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS