Fight deck human-automation mode confusion detection using a generalized fuzzy hidden Markov model

Hao Lyu Lyu, Purdue University

Abstract

Due to the need for aviation safety, convenience, and efficiency, the autopilot has been introduced into the cockpit. The fast development of the autopilot has brought great benefits to the aviation industry. On the human side, the flight deck has been designed to be a complex, tightly-coupled, and spatially distributed system. The problem of dysfunctional interaction between the pilot and the automation (human-automation interaction issue) has become more and more visible. Thus, detection of a mismatch between the pilot's expectation and automation's behavior in a timely manner is required. In order to solve this challenging problem, separate modeling of the pilot and the automation is necessary. In this thesis, an intent-based framework is introduced to detect the human-automation interaction issue. Under this framework, the pilot's expectation of the aircraft is modeled by pilot intent while the behavior of the automation system is modeled by automation intent. The mode confusion is detected when the automation intent differs from the pilot intent. The pilot intent is inferred by comparing the target value set by the pilot with the aircraft's current state. Meanwhile, the automation intent is inferred through the Generalized Fuzzy Hidden Markov Model (GFHMM), which is an extension of the classical Hidden Markov Model. The stochastic characteristic of the ``hidden'' intents is considered by introducing fuzzy logic. Different from the previous approaches of inferring automation intent, GFHMM does not require a probabilistic model for certain flight modes as prior knowledge. The parameters of GFHMM (initial fuzzy density of the intent, fuzzy transmission density, and fuzzy emission density) are determined through the flight data by using a machine learning technique, the Fuzzy C-Means clustering algorithm (FCM). Lastly, both the pilot's and automation's intent inference algorithms and the mode confusion detection method are validated through flight data.

Degree

M.S.A.A.

Advisors

Inseok, Purdue University.

Subject Area

Aerospace engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS