Signal analysis and radioholographic methods for airborne radio occultations

Kuo-Nung Wang, Purdue University

Abstract

Global Positioning System (GPS) radio occultation (RO) is an atmospheric sounding technique utilizing the change in propagation direction and delay of the GPS signal to measure refractivity, which provides information on temperature and humidity. The GPS-RO technique is now operational on several Low Earth Orbiting (LEO) satellite missions. Nevertheless, when observing localized transient events, such as tropical storms, current LEO satellite systems cannot provide sufficiently high temporal and spatial resolution soundings. An airborne RO (ARO) system has therefore been developed for localized GPS-RO campaigns. The open-loop (OL) tracking in post-processing is used to cross-correlates the received Global Navigation Satellite System (GNSS) signal with an internally generated local carrier signal predicted from a Doppler model and extract the atmospheric refractivity information. OL tracking also allows robust processing of rising GPS signals using backward tracking, which will double the observed occultation event numbers. RO signals in the lower troposphere are adversely affected by rapid phase accelerations and severe signal power fading, however. The negative bias caused by low signal-to-noise ratio (SNR) and multipath ray propagation limits the depth of tracking in the atmosphere. Therefore, we developed a model relating the SNR to the variance in the residual phase of the observed signal produced from OL tracking, and its applicability to airborne data is demonstrated. We then apply this model to set a threshold on refractivity retrieval, based upon the cumulative unwrapping error bias, to determine the altitude limit for reliable signal tracking. To enhance the SNR and decrease the unwrapping error rate, the CIRA-Q climatological model and signal residual phase pre-filtering are utilized to process the ARO residual phase. This more accurately modeled phase and less noisy received signal are shown to greatly reduce the bias caused by unwrapping error at lower altitude. On the other hand, to process the superimposed signal in the lower troposphere with its highly variable moisture distribution, Radio-Holographic (RH) methods such as Phase Matching (PM) have been adapted for ARO platforms to untangle the bending angle of each signal path. Under the assumption of spherically symmetric atmosphere, ARO PM can identify different subsignals using the Method of the Stationary Phase (MSP) and determine the arrival angle for each impact parameter. As a result, each subsignal can be distinguished and its corresponding bending angle can be retrieved without producing a negative bias. The refractivity retrieval results using ARO PM are compared to those using the traditional Geometrical Optics (GO) method. The improvements are shown and discussed in the dissertation. We applied these new methods to the received ARO data collected by the GNSS instrument system for multistatic and occultation sensing (GISMOS) in the 2010 PREDepression Investigation of Cloud systems (PREDICT) campaign. A data set of 5 research flights with 57 occultation events during the formation stage of the Hurricane Karl are processed and analyzed. In this research, the refractivity fractional difference with ERA-I model can be maintained at an average 2% above a height of 2km with a climatological model and ARO PM. Compared to the traditional geometrical optics (GO) method without climatological method assistance, the new ARO processing can effectively decrease the refractivity negative bias and significantly improve the retrieval depth of ARO.

Degree

Ph.D.

Advisors

Garrison, Purdue University.

Subject Area

Aerospace engineering|Remote sensing

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS