Design of a surgical manipulator system for lumbar discectomy procedures

Benjamin V Johnson, Purdue University

Abstract

A 3D printed surgical master-slave manipulator system for minimally invasive lumbar discectomy procedure is proposed. Discectomy is the surgery to remove the herniated disc material that is pressing on a nerve root or spinal cord. This surgery is performed to relieve pain or numbness caused by the pressure on the nerve. The workspace is limited (< 27 cm3) and the manipulator has to go through a 3.175mm (0.125”) diameter channel. The proposed system is comprised of a family of manipulators that can work alone or co-operatively to perform tasks required in the surgery. In the proposed system, the manipulator is 3D printed with multiple materials, with flexible links acting as joints of the mechanism. These flexible links are actuated by cables which provide sufficient forces for actuation in the surgical workspace. In this thesis, existing surgical techniques are investigated and a new surgical system is proposed. Various design ideas are presented and evaluated for manufacturing and assembly. Finally, the proposed mechanisms are modeled and tested for their capability to assist the surgeon to perform tasks required for the surgery.

Degree

M.S.M.E.

Advisors

Cappelleri, Purdue University.

Subject Area

Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS