Abstract

Cognitive gameplay—the cognitive dimension of a player’s experience—emerges from the interaction between a player and a game. While its design requires careful consideration, cognitive gameplay can be designed only indirectly via the design of game components. In this paper, we focus on one such component—the core mechanic—which binds a player and game together through the performance of essential interactions. Little extant research has been aimed at developing frameworks to support the design of interactions within the core mechanic with cognitive gameplay in mind. We present a taxonomic framework named INFORM (Interaction desigN For the cORe Mechanic) to address this gap. INFORM employs twelve micro-level elements that collectively give structure to any individual interaction within the core mechanic. We characterize these elements in the context of videogames, and discuss their potential influences on cognitive gameplay. We situate these elements within a broader framework that synthesizes concepts relevant to game design. INFORM is a descriptive framework, and provides a common vocabulary and a set of concepts that designers can use to think systematically about issues related to micro-level interaction design and cognitive gameplay.

Comments

Sedig, K.; Parsons, P.; Haworth, R. Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames. Informatics 2017, 4, 4.

This is a PDF of Sedig, K.; Parsons, P.; Haworth, R. Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames. Informatics 2017, 4, 4. DOI: 10.3390/informatics4010004, published by MDPI AG, Basel, Switzerland. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Keywords

player–game interaction; core mechanic; interaction design of games; taxonomic framework; cognitive gameplay; cognition; videogames; game design; representation

Date of this Version

1-13-2017

DOI

10.3390/informatics4010004

Share

COinS